![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbird | GIF version |
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 10-May-1994.) |
Ref | Expression |
---|---|
mtbird.min | ⊢ (𝜑 → ¬ 𝜒) |
mtbird.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbird | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbird.min | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
2 | mtbird.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimpd 143 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | mtod 635 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-in1 586 ax-in2 587 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: eqneltrd 2210 neleqtrrd 2213 fidifsnen 6717 php5fin 6729 tridc 6746 fimax2gtrilemstep 6747 en2eqpr 6754 inflbti 6863 omp1eomlem 6931 difinfsnlem 6936 addnidpig 7092 nqnq0pi 7194 ltpopr 7351 cauappcvgprlemladdru 7412 caucvgprlemladdrl 7434 caucvgprprlemnkltj 7445 caucvgprprlemnkeqj 7446 caucvgprprlemaddq 7464 ltposr 7506 axltirr 7755 reapirr 8257 apirr 8285 indstr2 9305 xrltnsym 9472 xrlttr 9474 xrltso 9475 xltadd1 9552 xposdif 9558 xleaddadd 9563 lbioog 9589 ubioog 9590 fzn 9715 flqltnz 9953 iseqf1olemnab 10154 iseqf1olemqk 10160 exp3val 10188 zfz1isolemiso 10475 xrmaxltsup 10919 binomlem 11144 dvdsle 11390 2tp1odd 11429 divalglemeuneg 11468 bezoutlemle 11542 rpexp 11677 oddpwdclemxy 11692 oddpwdclemndvds 11694 sqpweven 11698 2sqpwodd 11699 ctinfom 11786 |
Copyright terms: Public domain | W3C validator |