| Step | Hyp | Ref
 | Expression | 
| 1 |   | suceq 4437 | 
. . . . 5
⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) | 
| 2 | 1 | eleq1d 2265 | 
. . . 4
⊢ (𝑥 = 𝑧 → (suc 𝑥 ∈ 𝑋 ↔ suc 𝑧 ∈ 𝑋)) | 
| 3 |   | tfrcllemsucaccv.u | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | 
| 4 | 3 | ralrimiva 2570 | 
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ∪ 𝑋 suc 𝑥 ∈ 𝑋) | 
| 5 |   | tfrcllemsucaccv.zy | 
. . . . 5
⊢ (𝜑 → 𝑧 ∈ 𝑌) | 
| 6 |   | tfrcllemsucaccv.yx | 
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑋) | 
| 7 |   | elunii 3844 | 
. . . . 5
⊢ ((𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋) → 𝑧 ∈ ∪ 𝑋) | 
| 8 | 5, 6, 7 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → 𝑧 ∈ ∪ 𝑋) | 
| 9 | 2, 4, 8 | rspcdva 2873 | 
. . 3
⊢ (𝜑 → suc 𝑧 ∈ 𝑋) | 
| 10 |   | tfrcl.f | 
. . . 4
⊢ 𝐹 = recs(𝐺) | 
| 11 |   | tfrcl.g | 
. . . 4
⊢ (𝜑 → Fun 𝐺) | 
| 12 |   | tfrcl.x | 
. . . 4
⊢ (𝜑 → Ord 𝑋) | 
| 13 |   | tfrcl.ex | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | 
| 14 |   | tfrcllemsucfn.1 | 
. . . 4
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | 
| 15 | 5, 6 | jca 306 | 
. . . . 5
⊢ (𝜑 → (𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋)) | 
| 16 |   | ordtr1 4423 | 
. . . . 5
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋) → 𝑧 ∈ 𝑋)) | 
| 17 | 12, 15, 16 | sylc 62 | 
. . . 4
⊢ (𝜑 → 𝑧 ∈ 𝑋) | 
| 18 |   | tfrcllemsucaccv.gfn | 
. . . 4
⊢ (𝜑 → 𝑔:𝑧⟶𝑆) | 
| 19 |   | tfrcllemsucaccv.gacc | 
. . . 4
⊢ (𝜑 → 𝑔 ∈ 𝐴) | 
| 20 | 10, 11, 12, 13, 14, 17, 18, 19 | tfrcllemsucfn 6411 | 
. . 3
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆) | 
| 21 |   | vex 2766 | 
. . . . . 6
⊢ 𝑦 ∈ V | 
| 22 | 21 | elsuc 4441 | 
. . . . 5
⊢ (𝑦 ∈ suc 𝑧 ↔ (𝑦 ∈ 𝑧 ∨ 𝑦 = 𝑧)) | 
| 23 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑔 ∈ V | 
| 24 |   | feq1 5390 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓:𝑥⟶𝑆 ↔ 𝑔:𝑥⟶𝑆)) | 
| 25 |   | fveq1 5557 | 
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝑓‘𝑦) = (𝑔‘𝑦)) | 
| 26 |   | reseq1 4940 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝑓 ↾ 𝑦) = (𝑔 ↾ 𝑦)) | 
| 27 | 26 | fveq2d 5562 | 
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 28 | 25, 27 | eqeq12d 2211 | 
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 29 | 28 | ralbidv 2497 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 30 | 24, 29 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) | 
| 31 | 30 | rexbidv 2498 | 
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) | 
| 32 | 23, 31, 14 | elab2 2912 | 
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 33 | 19, 32 | sylib 122 | 
. . . . . . . . 9
⊢ (𝜑 → ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 34 |   | simprrr 540 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) → ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 35 |   | simprrl 539 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) → 𝑔:𝑥⟶𝑆) | 
| 36 |   | ffn 5407 | 
. . . . . . . . . . . . 13
⊢ (𝑔:𝑥⟶𝑆 → 𝑔 Fn 𝑥) | 
| 37 | 35, 36 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) → 𝑔 Fn 𝑥) | 
| 38 | 18 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) → 𝑔:𝑧⟶𝑆) | 
| 39 |   | ffn 5407 | 
. . . . . . . . . . . . 13
⊢ (𝑔:𝑧⟶𝑆 → 𝑔 Fn 𝑧) | 
| 40 | 38, 39 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) → 𝑔 Fn 𝑧) | 
| 41 |   | fndmu 5359 | 
. . . . . . . . . . . 12
⊢ ((𝑔 Fn 𝑥 ∧ 𝑔 Fn 𝑧) → 𝑥 = 𝑧) | 
| 42 | 37, 40, 41 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) → 𝑥 = 𝑧) | 
| 43 | 42 | raleqdv 2699 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) → (∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 44 | 34, 43 | mpbid 147 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) → ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 45 | 33, 44 | rexlimddv 2619 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 46 | 45 | r19.21bi 2585 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 47 |   | ordelon 4418 | 
. . . . . . . . . . . . 13
⊢ ((Ord
𝑋 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ On) | 
| 48 | 12, 17, 47 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑧 ∈ On) | 
| 49 |   | onelon 4419 | 
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → 𝑦 ∈ On) | 
| 50 | 48, 49 | sylan 283 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → 𝑦 ∈ On) | 
| 51 |   | eloni 4410 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ On → Ord 𝑦) | 
| 52 |   | ordirr 4578 | 
. . . . . . . . . . 11
⊢ (Ord
𝑦 → ¬ 𝑦 ∈ 𝑦) | 
| 53 | 50, 51, 52 | 3syl 17 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → ¬ 𝑦 ∈ 𝑦) | 
| 54 |   | elequ2 2172 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦)) | 
| 55 | 54 | biimpcd 159 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑧 → (𝑧 = 𝑦 → 𝑦 ∈ 𝑦)) | 
| 56 | 55 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → (𝑧 = 𝑦 → 𝑦 ∈ 𝑦)) | 
| 57 | 53, 56 | mtod 664 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → ¬ 𝑧 = 𝑦) | 
| 58 | 57 | neqned 2374 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → 𝑧 ≠ 𝑦) | 
| 59 |   | fvunsng 5756 | 
. . . . . . . 8
⊢ ((𝑦 ∈ V ∧ 𝑧 ≠ 𝑦) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝑔‘𝑦)) | 
| 60 | 21, 58, 59 | sylancr 414 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝑔‘𝑦)) | 
| 61 |   | eloni 4410 | 
. . . . . . . . . . . 12
⊢ (𝑧 ∈ On → Ord 𝑧) | 
| 62 | 48, 61 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → Ord 𝑧) | 
| 63 |   | ordelss 4414 | 
. . . . . . . . . . 11
⊢ ((Ord
𝑧 ∧ 𝑦 ∈ 𝑧) → 𝑦 ⊆ 𝑧) | 
| 64 | 62, 63 | sylan 283 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → 𝑦 ⊆ 𝑧) | 
| 65 |   | resabs1 4975 | 
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝑧 → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑦) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)) | 
| 66 | 64, 65 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑦) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)) | 
| 67 | 18, 39 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑔 Fn 𝑧) | 
| 68 |   | ordirr 4578 | 
. . . . . . . . . . . . 13
⊢ (Ord
𝑧 → ¬ 𝑧 ∈ 𝑧) | 
| 69 | 62, 68 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) | 
| 70 |   | fsnunres 5764 | 
. . . . . . . . . . . 12
⊢ ((𝑔 Fn 𝑧 ∧ ¬ 𝑧 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) = 𝑔) | 
| 71 | 67, 69, 70 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) = 𝑔) | 
| 72 | 71 | reseq1d 4945 | 
. . . . . . . . . 10
⊢ (𝜑 → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑦) = (𝑔 ↾ 𝑦)) | 
| 73 | 72 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑦) = (𝑔 ↾ 𝑦)) | 
| 74 | 66, 73 | eqtr3d 2231 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦) = (𝑔 ↾ 𝑦)) | 
| 75 | 74 | fveq2d 5562 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 76 | 46, 60, 75 | 3eqtr4d 2239 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))) | 
| 77 |   | feq2 5391 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑓:𝑥⟶𝑆 ↔ 𝑓:𝑧⟶𝑆)) | 
| 78 | 77 | imbi1d 231 | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) | 
| 79 | 78 | albidv 1838 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) | 
| 80 | 13 | 3expia 1207 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 81 | 80 | alrimiv 1888 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 82 | 81 | ralrimiva 2570 | 
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 83 | 79, 82, 17 | rspcdva 2873 | 
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 84 |   | feq1 5390 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑓:𝑧⟶𝑆 ↔ 𝑔:𝑧⟶𝑆)) | 
| 85 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | 
| 86 | 85 | eleq1d 2265 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘𝑔) ∈ 𝑆)) | 
| 87 | 84, 86 | imbi12d 234 | 
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → ((𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) | 
| 88 | 87 | spv 1874 | 
. . . . . . . . . 10
⊢
(∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) | 
| 89 | 83, 18, 88 | sylc 62 | 
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝑔) ∈ 𝑆) | 
| 90 |   | fndm 5357 | 
. . . . . . . . . . 11
⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | 
| 91 | 67, 90 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑔 = 𝑧) | 
| 92 | 69, 91 | neleqtrrd 2295 | 
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑧 ∈ dom 𝑔) | 
| 93 |   | fsnunfv 5763 | 
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑌 ∧ (𝐺‘𝑔) ∈ 𝑆 ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧) = (𝐺‘𝑔)) | 
| 94 | 5, 89, 92, 93 | syl3anc 1249 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧) = (𝐺‘𝑔)) | 
| 95 | 94 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧) = (𝐺‘𝑔)) | 
| 96 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) | 
| 97 | 96 | fveq2d 5562 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧)) | 
| 98 |   | reseq2 4941 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧)) | 
| 99 | 98, 71 | sylan9eqr 2251 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦) = 𝑔) | 
| 100 | 99 | fveq2d 5562 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝑧) → (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)) = (𝐺‘𝑔)) | 
| 101 | 95, 97, 100 | 3eqtr4d 2239 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))) | 
| 102 | 76, 101 | jaodan 798 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑧 ∨ 𝑦 = 𝑧)) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))) | 
| 103 | 22, 102 | sylan2b 287 | 
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ suc 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))) | 
| 104 | 103 | ralrimiva 2570 | 
. . 3
⊢ (𝜑 → ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))) | 
| 105 |   | feq2 5391 | 
. . . . . 6
⊢ (𝑤 = suc 𝑧 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑤⟶𝑆 ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆)) | 
| 106 |   | raleq 2693 | 
. . . . . 6
⊢ (𝑤 = suc 𝑧 → (∀𝑦 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)) ↔ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)))) | 
| 107 | 105, 106 | anbi12d 473 | 
. . . . 5
⊢ (𝑤 = suc 𝑧 → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑤⟶𝑆 ∧ ∀𝑦 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))) ↔ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))))) | 
| 108 | 107 | rspcev 2868 | 
. . . 4
⊢ ((suc
𝑧 ∈ 𝑋 ∧ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)))) → ∃𝑤 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑤⟶𝑆 ∧ ∀𝑦 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)))) | 
| 109 |   | feq2 5391 | 
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑤⟶𝑆 ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑥⟶𝑆)) | 
| 110 |   | raleq 2693 | 
. . . . . 6
⊢ (𝑤 = 𝑥 → (∀𝑦 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)))) | 
| 111 | 109, 110 | anbi12d 473 | 
. . . . 5
⊢ (𝑤 = 𝑥 → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑤⟶𝑆 ∧ ∀𝑦 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))) ↔ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))))) | 
| 112 | 111 | cbvrexv 2730 | 
. . . 4
⊢
(∃𝑤 ∈
𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑤⟶𝑆 ∧ ∀𝑦 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))) ↔ ∃𝑥 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)))) | 
| 113 | 108, 112 | sylib 122 | 
. . 3
⊢ ((suc
𝑧 ∈ 𝑋 ∧ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)))) → ∃𝑥 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)))) | 
| 114 | 9, 20, 104, 113 | syl12anc 1247 | 
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)))) | 
| 115 |   | vex 2766 | 
. . . . . 6
⊢ 𝑧 ∈ V | 
| 116 |   | opexg 4261 | 
. . . . . 6
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ 𝑆) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) | 
| 117 | 115, 89, 116 | sylancr 414 | 
. . . . 5
⊢ (𝜑 → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) | 
| 118 |   | snexg 4217 | 
. . . . 5
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) | 
| 119 | 117, 118 | syl 14 | 
. . . 4
⊢ (𝜑 → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) | 
| 120 |   | unexg 4478 | 
. . . 4
⊢ ((𝑔 ∈ V ∧ {〈𝑧, (𝐺‘𝑔)〉} ∈ V) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) | 
| 121 | 23, 119, 120 | sylancr 414 | 
. . 3
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) | 
| 122 |   | feq1 5390 | 
. . . . . 6
⊢ (𝑓 = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑓:𝑥⟶𝑆 ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑥⟶𝑆)) | 
| 123 |   | fveq1 5557 | 
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑓‘𝑦) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦)) | 
| 124 |   | reseq1 4940 | 
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑓 ↾ 𝑦) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)) | 
| 125 | 124 | fveq2d 5562 | 
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))) | 
| 126 | 123, 125 | eqeq12d 2211 | 
. . . . . . 7
⊢ (𝑓 = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)))) | 
| 127 | 126 | ralbidv 2497 | 
. . . . . 6
⊢ (𝑓 = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦)))) | 
| 128 | 122, 127 | anbi12d 473 | 
. . . . 5
⊢ (𝑓 = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → ((𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))))) | 
| 129 | 128 | rexbidv 2498 | 
. . . 4
⊢ (𝑓 = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))))) | 
| 130 | 129, 14 | elab2g 2911 | 
. . 3
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴 ↔ ∃𝑥 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))))) | 
| 131 | 121, 130 | syl 14 | 
. 2
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴 ↔ ∃𝑥 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑦) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑦))))) | 
| 132 | 114, 131 | mpbird 167 | 
1
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) |