ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucaccv GIF version

Theorem tfrcllemsucaccv 6407
Description: Lemma for tfrcl 6417. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemsucaccv.yx (𝜑𝑌𝑋)
tfrcllemsucaccv.zy (𝜑𝑧𝑌)
tfrcllemsucaccv.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllemsucaccv.gfn (𝜑𝑔:𝑧𝑆)
tfrcllemsucaccv.gacc (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrcllemsucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦   𝑧,𝑓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑆(𝑦,𝑧,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem tfrcllemsucaccv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 suceq 4433 . . . . 5 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
21eleq1d 2262 . . . 4 (𝑥 = 𝑧 → (suc 𝑥𝑋 ↔ suc 𝑧𝑋))
3 tfrcllemsucaccv.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
43ralrimiva 2567 . . . 4 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
5 tfrcllemsucaccv.zy . . . . 5 (𝜑𝑧𝑌)
6 tfrcllemsucaccv.yx . . . . 5 (𝜑𝑌𝑋)
7 elunii 3840 . . . . 5 ((𝑧𝑌𝑌𝑋) → 𝑧 𝑋)
85, 6, 7syl2anc 411 . . . 4 (𝜑𝑧 𝑋)
92, 4, 8rspcdva 2869 . . 3 (𝜑 → suc 𝑧𝑋)
10 tfrcl.f . . . 4 𝐹 = recs(𝐺)
11 tfrcl.g . . . 4 (𝜑 → Fun 𝐺)
12 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
13 tfrcl.ex . . . 4 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
14 tfrcllemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
155, 6jca 306 . . . . 5 (𝜑 → (𝑧𝑌𝑌𝑋))
16 ordtr1 4419 . . . . 5 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
1712, 15, 16sylc 62 . . . 4 (𝜑𝑧𝑋)
18 tfrcllemsucaccv.gfn . . . 4 (𝜑𝑔:𝑧𝑆)
19 tfrcllemsucaccv.gacc . . . 4 (𝜑𝑔𝐴)
2010, 11, 12, 13, 14, 17, 18, 19tfrcllemsucfn 6406 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
21 vex 2763 . . . . . 6 𝑦 ∈ V
2221elsuc 4437 . . . . 5 (𝑦 ∈ suc 𝑧 ↔ (𝑦𝑧𝑦 = 𝑧))
23 vex 2763 . . . . . . . . . . 11 𝑔 ∈ V
24 feq1 5386 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
25 fveq1 5553 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
26 reseq1 4936 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
2726fveq2d 5558 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
2825, 27eqeq12d 2208 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
2928ralbidv 2494 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
3024, 29anbi12d 473 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
3130rexbidv 2495 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
3223, 31, 14elab2 2908 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
3319, 32sylib 122 . . . . . . . . 9 (𝜑 → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
34 simprrr 540 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
35 simprrl 539 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔:𝑥𝑆)
36 ffn 5403 . . . . . . . . . . . . 13 (𝑔:𝑥𝑆𝑔 Fn 𝑥)
3735, 36syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔 Fn 𝑥)
3818adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔:𝑧𝑆)
39 ffn 5403 . . . . . . . . . . . . 13 (𝑔:𝑧𝑆𝑔 Fn 𝑧)
4038, 39syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔 Fn 𝑧)
41 fndmu 5355 . . . . . . . . . . . 12 ((𝑔 Fn 𝑥𝑔 Fn 𝑧) → 𝑥 = 𝑧)
4237, 40, 41syl2anc 411 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑥 = 𝑧)
4342raleqdv 2696 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → (∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4434, 43mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
4533, 44rexlimddv 2616 . . . . . . . 8 (𝜑 → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
4645r19.21bi 2582 . . . . . . 7 ((𝜑𝑦𝑧) → (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
47 ordelon 4414 . . . . . . . . . . . . 13 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
4812, 17, 47syl2anc 411 . . . . . . . . . . . 12 (𝜑𝑧 ∈ On)
49 onelon 4415 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
5048, 49sylan 283 . . . . . . . . . . 11 ((𝜑𝑦𝑧) → 𝑦 ∈ On)
51 eloni 4406 . . . . . . . . . . 11 (𝑦 ∈ On → Ord 𝑦)
52 ordirr 4574 . . . . . . . . . . 11 (Ord 𝑦 → ¬ 𝑦𝑦)
5350, 51, 523syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑧) → ¬ 𝑦𝑦)
54 elequ2 2169 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
5554biimpcd 159 . . . . . . . . . . 11 (𝑦𝑧 → (𝑧 = 𝑦𝑦𝑦))
5655adantl 277 . . . . . . . . . 10 ((𝜑𝑦𝑧) → (𝑧 = 𝑦𝑦𝑦))
5753, 56mtod 664 . . . . . . . . 9 ((𝜑𝑦𝑧) → ¬ 𝑧 = 𝑦)
5857neqned 2371 . . . . . . . 8 ((𝜑𝑦𝑧) → 𝑧𝑦)
59 fvunsng 5752 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧𝑦) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝑔𝑦))
6021, 58, 59sylancr 414 . . . . . . 7 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝑔𝑦))
61 eloni 4406 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
6248, 61syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
63 ordelss 4410 . . . . . . . . . . 11 ((Ord 𝑧𝑦𝑧) → 𝑦𝑧)
6462, 63sylan 283 . . . . . . . . . 10 ((𝜑𝑦𝑧) → 𝑦𝑧)
65 resabs1 4971 . . . . . . . . . 10 (𝑦𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
6664, 65syl 14 . . . . . . . . 9 ((𝜑𝑦𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
6718, 39syl 14 . . . . . . . . . . . 12 (𝜑𝑔 Fn 𝑧)
68 ordirr 4574 . . . . . . . . . . . . 13 (Ord 𝑧 → ¬ 𝑧𝑧)
6962, 68syl 14 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧𝑧)
70 fsnunres 5760 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
7167, 69, 70syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
7271reseq1d 4941 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = (𝑔𝑦))
7372adantr 276 . . . . . . . . 9 ((𝜑𝑦𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = (𝑔𝑦))
7466, 73eqtr3d 2228 . . . . . . . 8 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = (𝑔𝑦))
7574fveq2d 5558 . . . . . . 7 ((𝜑𝑦𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) = (𝐺‘(𝑔𝑦)))
7646, 60, 753eqtr4d 2236 . . . . . 6 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
77 feq2 5387 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
7877imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
7978albidv 1835 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
80133expia 1207 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8180alrimiv 1885 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8281ralrimiva 2567 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8379, 82, 17rspcdva 2869 . . . . . . . . . 10 (𝜑 → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
84 feq1 5386 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
85 fveq2 5554 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
8685eleq1d 2262 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
8784, 86imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
8887spv 1871 . . . . . . . . . 10 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
8983, 18, 88sylc 62 . . . . . . . . 9 (𝜑 → (𝐺𝑔) ∈ 𝑆)
90 fndm 5353 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
9167, 90syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑔 = 𝑧)
9269, 91neleqtrrd 2292 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
93 fsnunfv 5759 . . . . . . . . 9 ((𝑧𝑌 ∧ (𝐺𝑔) ∈ 𝑆 ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
945, 89, 92, 93syl3anc 1249 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
9594adantr 276 . . . . . . 7 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
96 simpr 110 . . . . . . . 8 ((𝜑𝑦 = 𝑧) → 𝑦 = 𝑧)
9796fveq2d 5558 . . . . . . 7 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧))
98 reseq2 4937 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧))
9998, 71sylan9eqr 2248 . . . . . . . 8 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = 𝑔)
10099fveq2d 5558 . . . . . . 7 ((𝜑𝑦 = 𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) = (𝐺𝑔))
10195, 97, 1003eqtr4d 2236 . . . . . 6 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
10276, 101jaodan 798 . . . . 5 ((𝜑 ∧ (𝑦𝑧𝑦 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
10322, 102sylan2b 287 . . . 4 ((𝜑𝑦 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
104103ralrimiva 2567 . . 3 (𝜑 → ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
105 feq2 5387 . . . . . 6 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆))
106 raleq 2690 . . . . . 6 (𝑤 = suc 𝑧 → (∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) ↔ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
107105, 106anbi12d 473 . . . . 5 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
108107rspcev 2864 . . . 4 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))) → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
109 feq2 5387 . . . . . 6 (𝑤 = 𝑥 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆))
110 raleq 2690 . . . . . 6 (𝑤 = 𝑥 → (∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) ↔ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
111109, 110anbi12d 473 . . . . 5 (𝑤 = 𝑥 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
112111cbvrexv 2727 . . . 4 (∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
113108, 112sylib 122 . . 3 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))) → ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
1149, 20, 104, 113syl12anc 1247 . 2 (𝜑 → ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
115 vex 2763 . . . . . 6 𝑧 ∈ V
116 opexg 4257 . . . . . 6 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
117115, 89, 116sylancr 414 . . . . 5 (𝜑 → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
118 snexg 4213 . . . . 5 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
119117, 118syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
120 unexg 4474 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
12123, 119, 120sylancr 414 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
122 feq1 5386 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓:𝑥𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆))
123 fveq1 5553 . . . . . . . 8 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦))
124 reseq1 4936 . . . . . . . . 9 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
125124fveq2d 5558 . . . . . . . 8 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝐺‘(𝑓𝑦)) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
126123, 125eqeq12d 2208 . . . . . . 7 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
127126ralbidv 2494 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
128122, 127anbi12d 473 . . . . 5 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
129128rexbidv 2495 . . . 4 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
130129, 14elab2g 2907 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
131121, 130syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
132114, 131mpbird 167 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980  wal 1362   = wceq 1364  wcel 2164  {cab 2179  wne 2364  wral 2472  wrex 2473  Vcvv 2760  cun 3151  wss 3153  {csn 3618  cop 3621   cuni 3835  Ord word 4393  Oncon0 4394  suc csuc 4396  dom cdm 4659  cres 4661  Fun wfun 5248   Fn wfn 5249  wf 5250  cfv 5254  recscrecs 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by:  tfrcllembacc  6408  tfrcllemres  6415
  Copyright terms: Public domain W3C validator