ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucaccv GIF version

Theorem tfrcllemsucaccv 6439
Description: Lemma for tfrcl 6449. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemsucaccv.yx (𝜑𝑌𝑋)
tfrcllemsucaccv.zy (𝜑𝑧𝑌)
tfrcllemsucaccv.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllemsucaccv.gfn (𝜑𝑔:𝑧𝑆)
tfrcllemsucaccv.gacc (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrcllemsucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦   𝑧,𝑓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑆(𝑦,𝑧,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem tfrcllemsucaccv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 suceq 4448 . . . . 5 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
21eleq1d 2273 . . . 4 (𝑥 = 𝑧 → (suc 𝑥𝑋 ↔ suc 𝑧𝑋))
3 tfrcllemsucaccv.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
43ralrimiva 2578 . . . 4 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
5 tfrcllemsucaccv.zy . . . . 5 (𝜑𝑧𝑌)
6 tfrcllemsucaccv.yx . . . . 5 (𝜑𝑌𝑋)
7 elunii 3854 . . . . 5 ((𝑧𝑌𝑌𝑋) → 𝑧 𝑋)
85, 6, 7syl2anc 411 . . . 4 (𝜑𝑧 𝑋)
92, 4, 8rspcdva 2881 . . 3 (𝜑 → suc 𝑧𝑋)
10 tfrcl.f . . . 4 𝐹 = recs(𝐺)
11 tfrcl.g . . . 4 (𝜑 → Fun 𝐺)
12 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
13 tfrcl.ex . . . 4 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
14 tfrcllemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
155, 6jca 306 . . . . 5 (𝜑 → (𝑧𝑌𝑌𝑋))
16 ordtr1 4434 . . . . 5 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
1712, 15, 16sylc 62 . . . 4 (𝜑𝑧𝑋)
18 tfrcllemsucaccv.gfn . . . 4 (𝜑𝑔:𝑧𝑆)
19 tfrcllemsucaccv.gacc . . . 4 (𝜑𝑔𝐴)
2010, 11, 12, 13, 14, 17, 18, 19tfrcllemsucfn 6438 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
21 vex 2774 . . . . . 6 𝑦 ∈ V
2221elsuc 4452 . . . . 5 (𝑦 ∈ suc 𝑧 ↔ (𝑦𝑧𝑦 = 𝑧))
23 vex 2774 . . . . . . . . . . 11 𝑔 ∈ V
24 feq1 5407 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
25 fveq1 5574 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
26 reseq1 4952 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
2726fveq2d 5579 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
2825, 27eqeq12d 2219 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
2928ralbidv 2505 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
3024, 29anbi12d 473 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
3130rexbidv 2506 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
3223, 31, 14elab2 2920 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
3319, 32sylib 122 . . . . . . . . 9 (𝜑 → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
34 simprrr 540 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
35 simprrl 539 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔:𝑥𝑆)
36 ffn 5424 . . . . . . . . . . . . 13 (𝑔:𝑥𝑆𝑔 Fn 𝑥)
3735, 36syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔 Fn 𝑥)
3818adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔:𝑧𝑆)
39 ffn 5424 . . . . . . . . . . . . 13 (𝑔:𝑧𝑆𝑔 Fn 𝑧)
4038, 39syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔 Fn 𝑧)
41 fndmu 5376 . . . . . . . . . . . 12 ((𝑔 Fn 𝑥𝑔 Fn 𝑧) → 𝑥 = 𝑧)
4237, 40, 41syl2anc 411 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑥 = 𝑧)
4342raleqdv 2707 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → (∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4434, 43mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
4533, 44rexlimddv 2627 . . . . . . . 8 (𝜑 → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
4645r19.21bi 2593 . . . . . . 7 ((𝜑𝑦𝑧) → (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
47 ordelon 4429 . . . . . . . . . . . . 13 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
4812, 17, 47syl2anc 411 . . . . . . . . . . . 12 (𝜑𝑧 ∈ On)
49 onelon 4430 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
5048, 49sylan 283 . . . . . . . . . . 11 ((𝜑𝑦𝑧) → 𝑦 ∈ On)
51 eloni 4421 . . . . . . . . . . 11 (𝑦 ∈ On → Ord 𝑦)
52 ordirr 4589 . . . . . . . . . . 11 (Ord 𝑦 → ¬ 𝑦𝑦)
5350, 51, 523syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑧) → ¬ 𝑦𝑦)
54 elequ2 2180 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
5554biimpcd 159 . . . . . . . . . . 11 (𝑦𝑧 → (𝑧 = 𝑦𝑦𝑦))
5655adantl 277 . . . . . . . . . 10 ((𝜑𝑦𝑧) → (𝑧 = 𝑦𝑦𝑦))
5753, 56mtod 664 . . . . . . . . 9 ((𝜑𝑦𝑧) → ¬ 𝑧 = 𝑦)
5857neqned 2382 . . . . . . . 8 ((𝜑𝑦𝑧) → 𝑧𝑦)
59 fvunsng 5777 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧𝑦) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝑔𝑦))
6021, 58, 59sylancr 414 . . . . . . 7 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝑔𝑦))
61 eloni 4421 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
6248, 61syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
63 ordelss 4425 . . . . . . . . . . 11 ((Ord 𝑧𝑦𝑧) → 𝑦𝑧)
6462, 63sylan 283 . . . . . . . . . 10 ((𝜑𝑦𝑧) → 𝑦𝑧)
65 resabs1 4987 . . . . . . . . . 10 (𝑦𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
6664, 65syl 14 . . . . . . . . 9 ((𝜑𝑦𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
6718, 39syl 14 . . . . . . . . . . . 12 (𝜑𝑔 Fn 𝑧)
68 ordirr 4589 . . . . . . . . . . . . 13 (Ord 𝑧 → ¬ 𝑧𝑧)
6962, 68syl 14 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧𝑧)
70 fsnunres 5785 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
7167, 69, 70syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
7271reseq1d 4957 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = (𝑔𝑦))
7372adantr 276 . . . . . . . . 9 ((𝜑𝑦𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = (𝑔𝑦))
7466, 73eqtr3d 2239 . . . . . . . 8 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = (𝑔𝑦))
7574fveq2d 5579 . . . . . . 7 ((𝜑𝑦𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) = (𝐺‘(𝑔𝑦)))
7646, 60, 753eqtr4d 2247 . . . . . 6 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
77 feq2 5408 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
7877imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
7978albidv 1846 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
80133expia 1207 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8180alrimiv 1896 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8281ralrimiva 2578 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8379, 82, 17rspcdva 2881 . . . . . . . . . 10 (𝜑 → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
84 feq1 5407 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
85 fveq2 5575 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
8685eleq1d 2273 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
8784, 86imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
8887spv 1882 . . . . . . . . . 10 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
8983, 18, 88sylc 62 . . . . . . . . 9 (𝜑 → (𝐺𝑔) ∈ 𝑆)
90 fndm 5372 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
9167, 90syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑔 = 𝑧)
9269, 91neleqtrrd 2303 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
93 fsnunfv 5784 . . . . . . . . 9 ((𝑧𝑌 ∧ (𝐺𝑔) ∈ 𝑆 ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
945, 89, 92, 93syl3anc 1249 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
9594adantr 276 . . . . . . 7 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
96 simpr 110 . . . . . . . 8 ((𝜑𝑦 = 𝑧) → 𝑦 = 𝑧)
9796fveq2d 5579 . . . . . . 7 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧))
98 reseq2 4953 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧))
9998, 71sylan9eqr 2259 . . . . . . . 8 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = 𝑔)
10099fveq2d 5579 . . . . . . 7 ((𝜑𝑦 = 𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) = (𝐺𝑔))
10195, 97, 1003eqtr4d 2247 . . . . . 6 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
10276, 101jaodan 798 . . . . 5 ((𝜑 ∧ (𝑦𝑧𝑦 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
10322, 102sylan2b 287 . . . 4 ((𝜑𝑦 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
104103ralrimiva 2578 . . 3 (𝜑 → ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
105 feq2 5408 . . . . . 6 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆))
106 raleq 2701 . . . . . 6 (𝑤 = suc 𝑧 → (∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) ↔ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
107105, 106anbi12d 473 . . . . 5 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
108107rspcev 2876 . . . 4 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))) → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
109 feq2 5408 . . . . . 6 (𝑤 = 𝑥 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆))
110 raleq 2701 . . . . . 6 (𝑤 = 𝑥 → (∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) ↔ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
111109, 110anbi12d 473 . . . . 5 (𝑤 = 𝑥 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
112111cbvrexv 2738 . . . 4 (∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
113108, 112sylib 122 . . 3 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))) → ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
1149, 20, 104, 113syl12anc 1247 . 2 (𝜑 → ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
115 vex 2774 . . . . . 6 𝑧 ∈ V
116 opexg 4271 . . . . . 6 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
117115, 89, 116sylancr 414 . . . . 5 (𝜑 → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
118 snexg 4227 . . . . 5 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
119117, 118syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
120 unexg 4489 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
12123, 119, 120sylancr 414 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
122 feq1 5407 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓:𝑥𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆))
123 fveq1 5574 . . . . . . . 8 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦))
124 reseq1 4952 . . . . . . . . 9 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
125124fveq2d 5579 . . . . . . . 8 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝐺‘(𝑓𝑦)) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
126123, 125eqeq12d 2219 . . . . . . 7 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
127126ralbidv 2505 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
128122, 127anbi12d 473 . . . . 5 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
129128rexbidv 2506 . . . 4 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
130129, 14elab2g 2919 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
131121, 130syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
132114, 131mpbird 167 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980  wal 1370   = wceq 1372  wcel 2175  {cab 2190  wne 2375  wral 2483  wrex 2484  Vcvv 2771  cun 3163  wss 3165  {csn 3632  cop 3635   cuni 3849  Ord word 4408  Oncon0 4409  suc csuc 4411  dom cdm 4674  cres 4676  Fun wfun 5264   Fn wfn 5265  wf 5266  cfv 5270  recscrecs 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278
This theorem is referenced by:  tfrcllembacc  6440  tfrcllemres  6447
  Copyright terms: Public domain W3C validator