ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucaccv GIF version

Theorem tfrcllemsucaccv 6259
Description: Lemma for tfrcl 6269. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemsucaccv.yx (𝜑𝑌𝑋)
tfrcllemsucaccv.zy (𝜑𝑧𝑌)
tfrcllemsucaccv.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllemsucaccv.gfn (𝜑𝑔:𝑧𝑆)
tfrcllemsucaccv.gacc (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrcllemsucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦   𝑧,𝑓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑆(𝑦,𝑧,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem tfrcllemsucaccv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 suceq 4332 . . . . 5 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
21eleq1d 2209 . . . 4 (𝑥 = 𝑧 → (suc 𝑥𝑋 ↔ suc 𝑧𝑋))
3 tfrcllemsucaccv.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
43ralrimiva 2508 . . . 4 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
5 tfrcllemsucaccv.zy . . . . 5 (𝜑𝑧𝑌)
6 tfrcllemsucaccv.yx . . . . 5 (𝜑𝑌𝑋)
7 elunii 3749 . . . . 5 ((𝑧𝑌𝑌𝑋) → 𝑧 𝑋)
85, 6, 7syl2anc 409 . . . 4 (𝜑𝑧 𝑋)
92, 4, 8rspcdva 2798 . . 3 (𝜑 → suc 𝑧𝑋)
10 tfrcl.f . . . 4 𝐹 = recs(𝐺)
11 tfrcl.g . . . 4 (𝜑 → Fun 𝐺)
12 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
13 tfrcl.ex . . . 4 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
14 tfrcllemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
155, 6jca 304 . . . . 5 (𝜑 → (𝑧𝑌𝑌𝑋))
16 ordtr1 4318 . . . . 5 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
1712, 15, 16sylc 62 . . . 4 (𝜑𝑧𝑋)
18 tfrcllemsucaccv.gfn . . . 4 (𝜑𝑔:𝑧𝑆)
19 tfrcllemsucaccv.gacc . . . 4 (𝜑𝑔𝐴)
2010, 11, 12, 13, 14, 17, 18, 19tfrcllemsucfn 6258 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
21 vex 2692 . . . . . 6 𝑦 ∈ V
2221elsuc 4336 . . . . 5 (𝑦 ∈ suc 𝑧 ↔ (𝑦𝑧𝑦 = 𝑧))
23 vex 2692 . . . . . . . . . . 11 𝑔 ∈ V
24 feq1 5263 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
25 fveq1 5428 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
26 reseq1 4821 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
2726fveq2d 5433 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
2825, 27eqeq12d 2155 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
2928ralbidv 2438 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
3024, 29anbi12d 465 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
3130rexbidv 2439 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
3223, 31, 14elab2 2836 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
3319, 32sylib 121 . . . . . . . . 9 (𝜑 → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
34 simprrr 530 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
35 simprrl 529 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔:𝑥𝑆)
36 ffn 5280 . . . . . . . . . . . . 13 (𝑔:𝑥𝑆𝑔 Fn 𝑥)
3735, 36syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔 Fn 𝑥)
3818adantr 274 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔:𝑧𝑆)
39 ffn 5280 . . . . . . . . . . . . 13 (𝑔:𝑧𝑆𝑔 Fn 𝑧)
4038, 39syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔 Fn 𝑧)
41 fndmu 5232 . . . . . . . . . . . 12 ((𝑔 Fn 𝑥𝑔 Fn 𝑧) → 𝑥 = 𝑧)
4237, 40, 41syl2anc 409 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑥 = 𝑧)
4342raleqdv 2635 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → (∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4434, 43mpbid 146 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
4533, 44rexlimddv 2557 . . . . . . . 8 (𝜑 → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
4645r19.21bi 2523 . . . . . . 7 ((𝜑𝑦𝑧) → (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
47 ordelon 4313 . . . . . . . . . . . . 13 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
4812, 17, 47syl2anc 409 . . . . . . . . . . . 12 (𝜑𝑧 ∈ On)
49 onelon 4314 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
5048, 49sylan 281 . . . . . . . . . . 11 ((𝜑𝑦𝑧) → 𝑦 ∈ On)
51 eloni 4305 . . . . . . . . . . 11 (𝑦 ∈ On → Ord 𝑦)
52 ordirr 4465 . . . . . . . . . . 11 (Ord 𝑦 → ¬ 𝑦𝑦)
5350, 51, 523syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑧) → ¬ 𝑦𝑦)
54 elequ2 1692 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
5554biimpcd 158 . . . . . . . . . . 11 (𝑦𝑧 → (𝑧 = 𝑦𝑦𝑦))
5655adantl 275 . . . . . . . . . 10 ((𝜑𝑦𝑧) → (𝑧 = 𝑦𝑦𝑦))
5753, 56mtod 653 . . . . . . . . 9 ((𝜑𝑦𝑧) → ¬ 𝑧 = 𝑦)
5857neqned 2316 . . . . . . . 8 ((𝜑𝑦𝑧) → 𝑧𝑦)
59 fvunsng 5622 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧𝑦) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝑔𝑦))
6021, 58, 59sylancr 411 . . . . . . 7 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝑔𝑦))
61 eloni 4305 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
6248, 61syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
63 ordelss 4309 . . . . . . . . . . 11 ((Ord 𝑧𝑦𝑧) → 𝑦𝑧)
6462, 63sylan 281 . . . . . . . . . 10 ((𝜑𝑦𝑧) → 𝑦𝑧)
65 resabs1 4856 . . . . . . . . . 10 (𝑦𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
6664, 65syl 14 . . . . . . . . 9 ((𝜑𝑦𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
6718, 39syl 14 . . . . . . . . . . . 12 (𝜑𝑔 Fn 𝑧)
68 ordirr 4465 . . . . . . . . . . . . 13 (Ord 𝑧 → ¬ 𝑧𝑧)
6962, 68syl 14 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧𝑧)
70 fsnunres 5630 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
7167, 69, 70syl2anc 409 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
7271reseq1d 4826 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = (𝑔𝑦))
7372adantr 274 . . . . . . . . 9 ((𝜑𝑦𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = (𝑔𝑦))
7466, 73eqtr3d 2175 . . . . . . . 8 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = (𝑔𝑦))
7574fveq2d 5433 . . . . . . 7 ((𝜑𝑦𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) = (𝐺‘(𝑔𝑦)))
7646, 60, 753eqtr4d 2183 . . . . . 6 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
77 feq2 5264 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
7877imbi1d 230 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
7978albidv 1797 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
80133expia 1184 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8180alrimiv 1847 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8281ralrimiva 2508 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8379, 82, 17rspcdva 2798 . . . . . . . . . 10 (𝜑 → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
84 feq1 5263 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
85 fveq2 5429 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
8685eleq1d 2209 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
8784, 86imbi12d 233 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
8887spv 1833 . . . . . . . . . 10 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
8983, 18, 88sylc 62 . . . . . . . . 9 (𝜑 → (𝐺𝑔) ∈ 𝑆)
90 fndm 5230 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
9167, 90syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑔 = 𝑧)
9269, 91neleqtrrd 2239 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
93 fsnunfv 5629 . . . . . . . . 9 ((𝑧𝑌 ∧ (𝐺𝑔) ∈ 𝑆 ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
945, 89, 92, 93syl3anc 1217 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
9594adantr 274 . . . . . . 7 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
96 simpr 109 . . . . . . . 8 ((𝜑𝑦 = 𝑧) → 𝑦 = 𝑧)
9796fveq2d 5433 . . . . . . 7 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧))
98 reseq2 4822 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧))
9998, 71sylan9eqr 2195 . . . . . . . 8 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = 𝑔)
10099fveq2d 5433 . . . . . . 7 ((𝜑𝑦 = 𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) = (𝐺𝑔))
10195, 97, 1003eqtr4d 2183 . . . . . 6 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
10276, 101jaodan 787 . . . . 5 ((𝜑 ∧ (𝑦𝑧𝑦 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
10322, 102sylan2b 285 . . . 4 ((𝜑𝑦 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
104103ralrimiva 2508 . . 3 (𝜑 → ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
105 feq2 5264 . . . . . 6 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆))
106 raleq 2629 . . . . . 6 (𝑤 = suc 𝑧 → (∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) ↔ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
107105, 106anbi12d 465 . . . . 5 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
108107rspcev 2793 . . . 4 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))) → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
109 feq2 5264 . . . . . 6 (𝑤 = 𝑥 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆))
110 raleq 2629 . . . . . 6 (𝑤 = 𝑥 → (∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) ↔ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
111109, 110anbi12d 465 . . . . 5 (𝑤 = 𝑥 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
112111cbvrexv 2658 . . . 4 (∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
113108, 112sylib 121 . . 3 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))) → ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
1149, 20, 104, 113syl12anc 1215 . 2 (𝜑 → ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
115 vex 2692 . . . . . 6 𝑧 ∈ V
116 opexg 4158 . . . . . 6 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
117115, 89, 116sylancr 411 . . . . 5 (𝜑 → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
118 snexg 4116 . . . . 5 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
119117, 118syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
120 unexg 4372 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
12123, 119, 120sylancr 411 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
122 feq1 5263 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓:𝑥𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆))
123 fveq1 5428 . . . . . . . 8 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦))
124 reseq1 4821 . . . . . . . . 9 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
125124fveq2d 5433 . . . . . . . 8 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝐺‘(𝑓𝑦)) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
126123, 125eqeq12d 2155 . . . . . . 7 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
127126ralbidv 2438 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
128122, 127anbi12d 465 . . . . 5 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
129128rexbidv 2439 . . . 4 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
130129, 14elab2g 2835 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
131121, 130syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
132114, 131mpbird 166 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 963  wal 1330   = wceq 1332  wcel 1481  {cab 2126  wne 2309  wral 2417  wrex 2418  Vcvv 2689  cun 3074  wss 3076  {csn 3532  cop 3535   cuni 3744  Ord word 4292  Oncon0 4293  suc csuc 4295  dom cdm 4547  cres 4549  Fun wfun 5125   Fn wfn 5126  wf 5127  cfv 5131  recscrecs 6209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139
This theorem is referenced by:  tfrcllembacc  6260  tfrcllemres  6267
  Copyright terms: Public domain W3C validator