ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucaccv GIF version

Theorem tfrcllemsucaccv 6350
Description: Lemma for tfrcl 6360. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemsucaccv.yx (𝜑𝑌𝑋)
tfrcllemsucaccv.zy (𝜑𝑧𝑌)
tfrcllemsucaccv.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllemsucaccv.gfn (𝜑𝑔:𝑧𝑆)
tfrcllemsucaccv.gacc (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrcllemsucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦   𝑧,𝑓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑆(𝑦,𝑧,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem tfrcllemsucaccv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 suceq 4400 . . . . 5 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
21eleq1d 2246 . . . 4 (𝑥 = 𝑧 → (suc 𝑥𝑋 ↔ suc 𝑧𝑋))
3 tfrcllemsucaccv.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
43ralrimiva 2550 . . . 4 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
5 tfrcllemsucaccv.zy . . . . 5 (𝜑𝑧𝑌)
6 tfrcllemsucaccv.yx . . . . 5 (𝜑𝑌𝑋)
7 elunii 3813 . . . . 5 ((𝑧𝑌𝑌𝑋) → 𝑧 𝑋)
85, 6, 7syl2anc 411 . . . 4 (𝜑𝑧 𝑋)
92, 4, 8rspcdva 2846 . . 3 (𝜑 → suc 𝑧𝑋)
10 tfrcl.f . . . 4 𝐹 = recs(𝐺)
11 tfrcl.g . . . 4 (𝜑 → Fun 𝐺)
12 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
13 tfrcl.ex . . . 4 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
14 tfrcllemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
155, 6jca 306 . . . . 5 (𝜑 → (𝑧𝑌𝑌𝑋))
16 ordtr1 4386 . . . . 5 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
1712, 15, 16sylc 62 . . . 4 (𝜑𝑧𝑋)
18 tfrcllemsucaccv.gfn . . . 4 (𝜑𝑔:𝑧𝑆)
19 tfrcllemsucaccv.gacc . . . 4 (𝜑𝑔𝐴)
2010, 11, 12, 13, 14, 17, 18, 19tfrcllemsucfn 6349 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
21 vex 2740 . . . . . 6 𝑦 ∈ V
2221elsuc 4404 . . . . 5 (𝑦 ∈ suc 𝑧 ↔ (𝑦𝑧𝑦 = 𝑧))
23 vex 2740 . . . . . . . . . . 11 𝑔 ∈ V
24 feq1 5345 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
25 fveq1 5511 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
26 reseq1 4898 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
2726fveq2d 5516 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
2825, 27eqeq12d 2192 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
2928ralbidv 2477 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
3024, 29anbi12d 473 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
3130rexbidv 2478 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
3223, 31, 14elab2 2885 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
3319, 32sylib 122 . . . . . . . . 9 (𝜑 → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
34 simprrr 540 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
35 simprrl 539 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔:𝑥𝑆)
36 ffn 5362 . . . . . . . . . . . . 13 (𝑔:𝑥𝑆𝑔 Fn 𝑥)
3735, 36syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔 Fn 𝑥)
3818adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔:𝑧𝑆)
39 ffn 5362 . . . . . . . . . . . . 13 (𝑔:𝑧𝑆𝑔 Fn 𝑧)
4038, 39syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑔 Fn 𝑧)
41 fndmu 5314 . . . . . . . . . . . 12 ((𝑔 Fn 𝑥𝑔 Fn 𝑧) → 𝑥 = 𝑧)
4237, 40, 41syl2anc 411 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → 𝑥 = 𝑧)
4342raleqdv 2678 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → (∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4434, 43mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋 ∧ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))) → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
4533, 44rexlimddv 2599 . . . . . . . 8 (𝜑 → ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
4645r19.21bi 2565 . . . . . . 7 ((𝜑𝑦𝑧) → (𝑔𝑦) = (𝐺‘(𝑔𝑦)))
47 ordelon 4381 . . . . . . . . . . . . 13 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
4812, 17, 47syl2anc 411 . . . . . . . . . . . 12 (𝜑𝑧 ∈ On)
49 onelon 4382 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
5048, 49sylan 283 . . . . . . . . . . 11 ((𝜑𝑦𝑧) → 𝑦 ∈ On)
51 eloni 4373 . . . . . . . . . . 11 (𝑦 ∈ On → Ord 𝑦)
52 ordirr 4539 . . . . . . . . . . 11 (Ord 𝑦 → ¬ 𝑦𝑦)
5350, 51, 523syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑧) → ¬ 𝑦𝑦)
54 elequ2 2153 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
5554biimpcd 159 . . . . . . . . . . 11 (𝑦𝑧 → (𝑧 = 𝑦𝑦𝑦))
5655adantl 277 . . . . . . . . . 10 ((𝜑𝑦𝑧) → (𝑧 = 𝑦𝑦𝑦))
5753, 56mtod 663 . . . . . . . . 9 ((𝜑𝑦𝑧) → ¬ 𝑧 = 𝑦)
5857neqned 2354 . . . . . . . 8 ((𝜑𝑦𝑧) → 𝑧𝑦)
59 fvunsng 5707 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧𝑦) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝑔𝑦))
6021, 58, 59sylancr 414 . . . . . . 7 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝑔𝑦))
61 eloni 4373 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
6248, 61syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
63 ordelss 4377 . . . . . . . . . . 11 ((Ord 𝑧𝑦𝑧) → 𝑦𝑧)
6462, 63sylan 283 . . . . . . . . . 10 ((𝜑𝑦𝑧) → 𝑦𝑧)
65 resabs1 4933 . . . . . . . . . 10 (𝑦𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
6664, 65syl 14 . . . . . . . . 9 ((𝜑𝑦𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
6718, 39syl 14 . . . . . . . . . . . 12 (𝜑𝑔 Fn 𝑧)
68 ordirr 4539 . . . . . . . . . . . . 13 (Ord 𝑧 → ¬ 𝑧𝑧)
6962, 68syl 14 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧𝑧)
70 fsnunres 5715 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
7167, 69, 70syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
7271reseq1d 4903 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = (𝑔𝑦))
7372adantr 276 . . . . . . . . 9 ((𝜑𝑦𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑦) = (𝑔𝑦))
7466, 73eqtr3d 2212 . . . . . . . 8 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = (𝑔𝑦))
7574fveq2d 5516 . . . . . . 7 ((𝜑𝑦𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) = (𝐺‘(𝑔𝑦)))
7646, 60, 753eqtr4d 2220 . . . . . 6 ((𝜑𝑦𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
77 feq2 5346 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
7877imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
7978albidv 1824 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
80133expia 1205 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8180alrimiv 1874 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8281ralrimiva 2550 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
8379, 82, 17rspcdva 2846 . . . . . . . . . 10 (𝜑 → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
84 feq1 5345 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
85 fveq2 5512 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
8685eleq1d 2246 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
8784, 86imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
8887spv 1860 . . . . . . . . . 10 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
8983, 18, 88sylc 62 . . . . . . . . 9 (𝜑 → (𝐺𝑔) ∈ 𝑆)
90 fndm 5312 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
9167, 90syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑔 = 𝑧)
9269, 91neleqtrrd 2276 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
93 fsnunfv 5714 . . . . . . . . 9 ((𝑧𝑌 ∧ (𝐺𝑔) ∈ 𝑆 ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
945, 89, 92, 93syl3anc 1238 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
9594adantr 276 . . . . . . 7 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
96 simpr 110 . . . . . . . 8 ((𝜑𝑦 = 𝑧) → 𝑦 = 𝑧)
9796fveq2d 5516 . . . . . . 7 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧))
98 reseq2 4899 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧))
9998, 71sylan9eqr 2232 . . . . . . . 8 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦) = 𝑔)
10099fveq2d 5516 . . . . . . 7 ((𝜑𝑦 = 𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) = (𝐺𝑔))
10195, 97, 1003eqtr4d 2220 . . . . . 6 ((𝜑𝑦 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
10276, 101jaodan 797 . . . . 5 ((𝜑 ∧ (𝑦𝑧𝑦 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
10322, 102sylan2b 287 . . . 4 ((𝜑𝑦 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
104103ralrimiva 2550 . . 3 (𝜑 → ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
105 feq2 5346 . . . . . 6 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆))
106 raleq 2672 . . . . . 6 (𝑤 = suc 𝑧 → (∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) ↔ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
107105, 106anbi12d 473 . . . . 5 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
108107rspcev 2841 . . . 4 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))) → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
109 feq2 5346 . . . . . 6 (𝑤 = 𝑥 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆))
110 raleq 2672 . . . . . 6 (𝑤 = 𝑥 → (∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)) ↔ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
111109, 110anbi12d 473 . . . . 5 (𝑤 = 𝑥 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
112111cbvrexv 2704 . . . 4 (∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑤𝑆 ∧ ∀𝑦𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))) ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
113108, 112sylib 122 . . 3 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ∧ ∀𝑦 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))) → ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
1149, 20, 104, 113syl12anc 1236 . 2 (𝜑 → ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
115 vex 2740 . . . . . 6 𝑧 ∈ V
116 opexg 4226 . . . . . 6 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
117115, 89, 116sylancr 414 . . . . 5 (𝜑 → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
118 snexg 4182 . . . . 5 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
119117, 118syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
120 unexg 4441 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
12123, 119, 120sylancr 414 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
122 feq1 5345 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓:𝑥𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆))
123 fveq1 5511 . . . . . . . 8 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦))
124 reseq1 4898 . . . . . . . . 9 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑓𝑦) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))
125124fveq2d 5516 . . . . . . . 8 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝐺‘(𝑓𝑦)) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))
126123, 125eqeq12d 2192 . . . . . . 7 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
127126ralbidv 2477 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦))))
128122, 127anbi12d 473 . . . . 5 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
129128rexbidv 2478 . . . 4 (𝑓 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
130129, 14elab2g 2884 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
131121, 130syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑥𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):𝑥𝑆 ∧ ∀𝑦𝑥 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑦) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑦)))))
132114, 131mpbird 167 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978  wal 1351   = wceq 1353  wcel 2148  {cab 2163  wne 2347  wral 2455  wrex 2456  Vcvv 2737  cun 3127  wss 3129  {csn 3592  cop 3595   cuni 3808  Ord word 4360  Oncon0 4361  suc csuc 4363  dom cdm 4624  cres 4626  Fun wfun 5207   Fn wfn 5208  wf 5209  cfv 5213  recscrecs 6300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4119  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-br 4002  df-opab 4063  df-tr 4100  df-id 4291  df-iord 4364  df-on 4366  df-suc 4369  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-f1 5218  df-fo 5219  df-f1o 5220  df-fv 5221
This theorem is referenced by:  tfrcllembacc  6351  tfrcllemres  6358
  Copyright terms: Public domain W3C validator