Step | Hyp | Ref
| Expression |
1 | | suceq 4387 |
. . . . 5
⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) |
2 | 1 | eleq1d 2239 |
. . . 4
⊢ (𝑥 = 𝑧 → (suc 𝑥 ∈ 𝑋 ↔ suc 𝑧 ∈ 𝑋)) |
3 | | tfr1onlemsucaccv.u |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
4 | 3 | ralrimiva 2543 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ∪ 𝑋 suc 𝑥 ∈ 𝑋) |
5 | | tfr1onlemsucaccv.zy |
. . . . 5
⊢ (𝜑 → 𝑧 ∈ 𝑌) |
6 | | tfr1onlemsucaccv.yx |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑋) |
7 | | elunii 3801 |
. . . . 5
⊢ ((𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋) → 𝑧 ∈ ∪ 𝑋) |
8 | 5, 6, 7 | syl2anc 409 |
. . . 4
⊢ (𝜑 → 𝑧 ∈ ∪ 𝑋) |
9 | 2, 4, 8 | rspcdva 2839 |
. . 3
⊢ (𝜑 → suc 𝑧 ∈ 𝑋) |
10 | | tfr1on.f |
. . . 4
⊢ 𝐹 = recs(𝐺) |
11 | | tfr1on.g |
. . . 4
⊢ (𝜑 → Fun 𝐺) |
12 | | tfr1on.x |
. . . 4
⊢ (𝜑 → Ord 𝑋) |
13 | | tfr1on.ex |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
14 | | tfr1onlemsucfn.1 |
. . . 4
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
15 | 5, 6 | jca 304 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋)) |
16 | | ordtr1 4373 |
. . . . 5
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋) → 𝑧 ∈ 𝑋)) |
17 | 12, 15, 16 | sylc 62 |
. . . 4
⊢ (𝜑 → 𝑧 ∈ 𝑋) |
18 | | tfr1onlemsucaccv.gfn |
. . . 4
⊢ (𝜑 → 𝑔 Fn 𝑧) |
19 | | tfr1onlemsucaccv.gacc |
. . . 4
⊢ (𝜑 → 𝑔 ∈ 𝐴) |
20 | 10, 11, 12, 13, 14, 17, 18, 19 | tfr1onlemsucfn 6319 |
. . 3
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) |
21 | | vex 2733 |
. . . . . 6
⊢ 𝑢 ∈ V |
22 | 21 | elsuc 4391 |
. . . . 5
⊢ (𝑢 ∈ suc 𝑧 ↔ (𝑢 ∈ 𝑧 ∨ 𝑢 = 𝑧)) |
23 | | vex 2733 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
24 | 14 | tfr1onlem3ag 6316 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ V → (𝑔 ∈ 𝐴 ↔ ∃𝑣 ∈ 𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) |
25 | 23, 24 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑣 ∈ 𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
26 | 19, 25 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑣 ∈ 𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
27 | | simprrr 535 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) |
28 | | simprrl 534 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → 𝑔 Fn 𝑣) |
29 | 18 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → 𝑔 Fn 𝑧) |
30 | | fndmu 5299 |
. . . . . . . . . . . 12
⊢ ((𝑔 Fn 𝑣 ∧ 𝑔 Fn 𝑧) → 𝑣 = 𝑧) |
31 | 28, 29, 30 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → 𝑣 = 𝑧) |
32 | 31 | raleqdv 2671 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → (∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
33 | 27, 32 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) |
34 | 26, 33 | rexlimddv 2592 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) |
35 | 34 | r19.21bi 2558 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) |
36 | | ordelon 4368 |
. . . . . . . . . . . . 13
⊢ ((Ord
𝑋 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ On) |
37 | 12, 17, 36 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑧 ∈ On) |
38 | | onelon 4369 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ On ∧ 𝑢 ∈ 𝑧) → 𝑢 ∈ On) |
39 | 37, 38 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → 𝑢 ∈ On) |
40 | | eloni 4360 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ On → Ord 𝑢) |
41 | | ordirr 4526 |
. . . . . . . . . . 11
⊢ (Ord
𝑢 → ¬ 𝑢 ∈ 𝑢) |
42 | 39, 40, 41 | 3syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ¬ 𝑢 ∈ 𝑢) |
43 | | elequ2 2146 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑢 → (𝑢 ∈ 𝑧 ↔ 𝑢 ∈ 𝑢)) |
44 | 43 | biimpcd 158 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ 𝑧 → (𝑧 = 𝑢 → 𝑢 ∈ 𝑢)) |
45 | 44 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (𝑧 = 𝑢 → 𝑢 ∈ 𝑢)) |
46 | 42, 45 | mtod 658 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ¬ 𝑧 = 𝑢) |
47 | 46 | neqned 2347 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → 𝑧 ≠ 𝑢) |
48 | | fvunsng 5690 |
. . . . . . . 8
⊢ ((𝑢 ∈ V ∧ 𝑧 ≠ 𝑢) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝑔‘𝑢)) |
49 | 21, 47, 48 | sylancr 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝑔‘𝑢)) |
50 | | eloni 4360 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ On → Ord 𝑧) |
51 | 37, 50 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → Ord 𝑧) |
52 | | ordelss 4364 |
. . . . . . . . . . 11
⊢ ((Ord
𝑧 ∧ 𝑢 ∈ 𝑧) → 𝑢 ⊆ 𝑧) |
53 | 51, 52 | sylan 281 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → 𝑢 ⊆ 𝑧) |
54 | | resabs1 4920 |
. . . . . . . . . 10
⊢ (𝑢 ⊆ 𝑧 → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)) |
55 | 53, 54 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)) |
56 | | ordirr 4526 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑧 → ¬ 𝑧 ∈ 𝑧) |
57 | 51, 56 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
58 | | fsnunres 5698 |
. . . . . . . . . . . 12
⊢ ((𝑔 Fn 𝑧 ∧ ¬ 𝑧 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) = 𝑔) |
59 | 18, 57, 58 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) = 𝑔) |
60 | 59 | reseq1d 4890 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = (𝑔 ↾ 𝑢)) |
61 | 60 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = (𝑔 ↾ 𝑢)) |
62 | 55, 61 | eqtr3d 2205 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢) = (𝑔 ↾ 𝑢)) |
63 | 62 | fveq2d 5500 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)) = (𝐺‘(𝑔 ↾ 𝑢))) |
64 | 35, 49, 63 | 3eqtr4d 2213 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) |
65 | | fneq2 5287 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑓 Fn 𝑥 ↔ 𝑓 Fn 𝑧)) |
66 | 65 | imbi1d 230 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
67 | 66 | albidv 1817 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
68 | 13 | 3expia 1200 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
69 | 68 | alrimiv 1867 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
70 | 69 | ralrimiva 2543 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
71 | 67, 70, 17 | rspcdva 2839 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V)) |
72 | | fneq1 5286 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑧 ↔ 𝑔 Fn 𝑧)) |
73 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) |
74 | 73 | eleq1d 2239 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ V ↔ (𝐺‘𝑔) ∈ V)) |
75 | 72, 74 | imbi12d 233 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V))) |
76 | 75 | spv 1853 |
. . . . . . . . . 10
⊢
(∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V)) |
77 | 71, 18, 76 | sylc 62 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝑔) ∈ V) |
78 | | fndm 5297 |
. . . . . . . . . . 11
⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) |
79 | 18, 78 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑔 = 𝑧) |
80 | 57, 79 | neleqtrrd 2269 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑧 ∈ dom 𝑔) |
81 | | fsnunfv 5697 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑌 ∧ (𝐺‘𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧) = (𝐺‘𝑔)) |
82 | 5, 77, 80, 81 | syl3anc 1233 |
. . . . . . . 8
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧) = (𝐺‘𝑔)) |
83 | 82 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧) = (𝐺‘𝑔)) |
84 | | simpr 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → 𝑢 = 𝑧) |
85 | 84 | fveq2d 5500 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧)) |
86 | | reseq2 4886 |
. . . . . . . . 9
⊢ (𝑢 = 𝑧 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧)) |
87 | 86, 59 | sylan9eqr 2225 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢) = 𝑔) |
88 | 87 | fveq2d 5500 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)) = (𝐺‘𝑔)) |
89 | 83, 85, 88 | 3eqtr4d 2213 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) |
90 | 64, 89 | jaodan 792 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑧 ∨ 𝑢 = 𝑧)) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) |
91 | 22, 90 | sylan2b 285 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) |
92 | 91 | ralrimiva 2543 |
. . 3
⊢ (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) |
93 | | fneq2 5287 |
. . . . 5
⊢ (𝑤 = suc 𝑧 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧)) |
94 | | raleq 2665 |
. . . . 5
⊢ (𝑤 = suc 𝑧 → (∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)))) |
95 | 93, 94 | anbi12d 470 |
. . . 4
⊢ (𝑤 = suc 𝑧 → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) ↔ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))))) |
96 | 95 | rspcev 2834 |
. . 3
⊢ ((suc
𝑧 ∈ 𝑋 ∧ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)))) → ∃𝑤 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)))) |
97 | 9, 20, 92, 96 | syl12anc 1231 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)))) |
98 | | vex 2733 |
. . . . . 6
⊢ 𝑧 ∈ V |
99 | | opexg 4213 |
. . . . . 6
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ V) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
100 | 98, 77, 99 | sylancr 412 |
. . . . 5
⊢ (𝜑 → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
101 | | snexg 4170 |
. . . . 5
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) |
102 | 100, 101 | syl 14 |
. . . 4
⊢ (𝜑 → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) |
103 | | unexg 4428 |
. . . 4
⊢ ((𝑔 ∈ V ∧ {〈𝑧, (𝐺‘𝑔)〉} ∈ V) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
104 | 23, 102, 103 | sylancr 412 |
. . 3
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
105 | 14 | tfr1onlem3ag 6316 |
. . 3
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴 ↔ ∃𝑤 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))))) |
106 | 104, 105 | syl 14 |
. 2
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴 ↔ ∃𝑤 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))))) |
107 | 97, 106 | mpbird 166 |
1
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) |