| Step | Hyp | Ref
| Expression |
| 1 | | suceq 4437 |
. . . . 5
⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) |
| 2 | 1 | eleq1d 2265 |
. . . 4
⊢ (𝑥 = 𝑧 → (suc 𝑥 ∈ 𝑋 ↔ suc 𝑧 ∈ 𝑋)) |
| 3 | | tfr1onlemsucaccv.u |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| 4 | 3 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ∪ 𝑋 suc 𝑥 ∈ 𝑋) |
| 5 | | tfr1onlemsucaccv.zy |
. . . . 5
⊢ (𝜑 → 𝑧 ∈ 𝑌) |
| 6 | | tfr1onlemsucaccv.yx |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| 7 | | elunii 3844 |
. . . . 5
⊢ ((𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋) → 𝑧 ∈ ∪ 𝑋) |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . 4
⊢ (𝜑 → 𝑧 ∈ ∪ 𝑋) |
| 9 | 2, 4, 8 | rspcdva 2873 |
. . 3
⊢ (𝜑 → suc 𝑧 ∈ 𝑋) |
| 10 | | tfr1on.f |
. . . 4
⊢ 𝐹 = recs(𝐺) |
| 11 | | tfr1on.g |
. . . 4
⊢ (𝜑 → Fun 𝐺) |
| 12 | | tfr1on.x |
. . . 4
⊢ (𝜑 → Ord 𝑋) |
| 13 | | tfr1on.ex |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
| 14 | | tfr1onlemsucfn.1 |
. . . 4
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| 15 | 5, 6 | jca 306 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋)) |
| 16 | | ordtr1 4423 |
. . . . 5
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋) → 𝑧 ∈ 𝑋)) |
| 17 | 12, 15, 16 | sylc 62 |
. . . 4
⊢ (𝜑 → 𝑧 ∈ 𝑋) |
| 18 | | tfr1onlemsucaccv.gfn |
. . . 4
⊢ (𝜑 → 𝑔 Fn 𝑧) |
| 19 | | tfr1onlemsucaccv.gacc |
. . . 4
⊢ (𝜑 → 𝑔 ∈ 𝐴) |
| 20 | 10, 11, 12, 13, 14, 17, 18, 19 | tfr1onlemsucfn 6398 |
. . 3
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) |
| 21 | | vex 2766 |
. . . . . 6
⊢ 𝑢 ∈ V |
| 22 | 21 | elsuc 4441 |
. . . . 5
⊢ (𝑢 ∈ suc 𝑧 ↔ (𝑢 ∈ 𝑧 ∨ 𝑢 = 𝑧)) |
| 23 | | vex 2766 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
| 24 | 14 | tfr1onlem3ag 6395 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ V → (𝑔 ∈ 𝐴 ↔ ∃𝑣 ∈ 𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) |
| 25 | 23, 24 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑣 ∈ 𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
| 26 | 19, 25 | sylib 122 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑣 ∈ 𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
| 27 | | simprrr 540 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) |
| 28 | | simprrl 539 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → 𝑔 Fn 𝑣) |
| 29 | 18 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → 𝑔 Fn 𝑧) |
| 30 | | fndmu 5359 |
. . . . . . . . . . . 12
⊢ ((𝑔 Fn 𝑣 ∧ 𝑔 Fn 𝑧) → 𝑣 = 𝑧) |
| 31 | 28, 29, 30 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → 𝑣 = 𝑧) |
| 32 | 31 | raleqdv 2699 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → (∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
| 33 | 27, 32 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢 ∈ 𝑣 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) → ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) |
| 34 | 26, 33 | rexlimddv 2619 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) |
| 35 | 34 | r19.21bi 2585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) |
| 36 | | ordelon 4418 |
. . . . . . . . . . . . 13
⊢ ((Ord
𝑋 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ On) |
| 37 | 12, 17, 36 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑧 ∈ On) |
| 38 | | onelon 4419 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ On ∧ 𝑢 ∈ 𝑧) → 𝑢 ∈ On) |
| 39 | 37, 38 | sylan 283 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → 𝑢 ∈ On) |
| 40 | | eloni 4410 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ On → Ord 𝑢) |
| 41 | | ordirr 4578 |
. . . . . . . . . . 11
⊢ (Ord
𝑢 → ¬ 𝑢 ∈ 𝑢) |
| 42 | 39, 40, 41 | 3syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ¬ 𝑢 ∈ 𝑢) |
| 43 | | elequ2 2172 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑢 → (𝑢 ∈ 𝑧 ↔ 𝑢 ∈ 𝑢)) |
| 44 | 43 | biimpcd 159 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ 𝑧 → (𝑧 = 𝑢 → 𝑢 ∈ 𝑢)) |
| 45 | 44 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (𝑧 = 𝑢 → 𝑢 ∈ 𝑢)) |
| 46 | 42, 45 | mtod 664 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ¬ 𝑧 = 𝑢) |
| 47 | 46 | neqned 2374 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → 𝑧 ≠ 𝑢) |
| 48 | | fvunsng 5756 |
. . . . . . . 8
⊢ ((𝑢 ∈ V ∧ 𝑧 ≠ 𝑢) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝑔‘𝑢)) |
| 49 | 21, 47, 48 | sylancr 414 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝑔‘𝑢)) |
| 50 | | eloni 4410 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ On → Ord 𝑧) |
| 51 | 37, 50 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → Ord 𝑧) |
| 52 | | ordelss 4414 |
. . . . . . . . . . 11
⊢ ((Ord
𝑧 ∧ 𝑢 ∈ 𝑧) → 𝑢 ⊆ 𝑧) |
| 53 | 51, 52 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → 𝑢 ⊆ 𝑧) |
| 54 | | resabs1 4975 |
. . . . . . . . . 10
⊢ (𝑢 ⊆ 𝑧 → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)) |
| 55 | 53, 54 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)) |
| 56 | | ordirr 4578 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑧 → ¬ 𝑧 ∈ 𝑧) |
| 57 | 51, 56 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
| 58 | | fsnunres 5764 |
. . . . . . . . . . . 12
⊢ ((𝑔 Fn 𝑧 ∧ ¬ 𝑧 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) = 𝑔) |
| 59 | 18, 57, 58 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) = 𝑔) |
| 60 | 59 | reseq1d 4945 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = (𝑔 ↾ 𝑢)) |
| 61 | 60 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧) ↾ 𝑢) = (𝑔 ↾ 𝑢)) |
| 62 | 55, 61 | eqtr3d 2231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢) = (𝑔 ↾ 𝑢)) |
| 63 | 62 | fveq2d 5562 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)) = (𝐺‘(𝑔 ↾ 𝑢))) |
| 64 | 35, 49, 63 | 3eqtr4d 2239 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) |
| 65 | | fneq2 5347 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑓 Fn 𝑥 ↔ 𝑓 Fn 𝑧)) |
| 66 | 65 | imbi1d 231 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
| 67 | 66 | albidv 1838 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V))) |
| 68 | 13 | 3expia 1207 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 69 | 68 | alrimiv 1888 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 70 | 69 | ralrimiva 2570 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
| 71 | 67, 70, 17 | rspcdva 2873 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V)) |
| 72 | | fneq1 5346 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑧 ↔ 𝑔 Fn 𝑧)) |
| 73 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) |
| 74 | 73 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ V ↔ (𝐺‘𝑔) ∈ V)) |
| 75 | 72, 74 | imbi12d 234 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V))) |
| 76 | 75 | spv 1874 |
. . . . . . . . . 10
⊢
(∀𝑓(𝑓 Fn 𝑧 → (𝐺‘𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V)) |
| 77 | 71, 18, 76 | sylc 62 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝑔) ∈ V) |
| 78 | | fndm 5357 |
. . . . . . . . . . 11
⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) |
| 79 | 18, 78 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑔 = 𝑧) |
| 80 | 57, 79 | neleqtrrd 2295 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑧 ∈ dom 𝑔) |
| 81 | | fsnunfv 5763 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑌 ∧ (𝐺‘𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧) = (𝐺‘𝑔)) |
| 82 | 5, 77, 80, 81 | syl3anc 1249 |
. . . . . . . 8
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧) = (𝐺‘𝑔)) |
| 83 | 82 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧) = (𝐺‘𝑔)) |
| 84 | | simpr 110 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → 𝑢 = 𝑧) |
| 85 | 84 | fveq2d 5562 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑧)) |
| 86 | | reseq2 4941 |
. . . . . . . . 9
⊢ (𝑢 = 𝑧 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢) = ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑧)) |
| 87 | 86, 59 | sylan9eqr 2251 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢) = 𝑔) |
| 88 | 87 | fveq2d 5562 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)) = (𝐺‘𝑔)) |
| 89 | 83, 85, 88 | 3eqtr4d 2239 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 = 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) |
| 90 | 64, 89 | jaodan 798 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑧 ∨ 𝑢 = 𝑧)) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) |
| 91 | 22, 90 | sylan2b 287 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) |
| 92 | 91 | ralrimiva 2570 |
. . 3
⊢ (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) |
| 93 | | fneq2 5347 |
. . . . 5
⊢ (𝑤 = suc 𝑧 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧)) |
| 94 | | raleq 2693 |
. . . . 5
⊢ (𝑤 = suc 𝑧 → (∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)))) |
| 95 | 93, 94 | anbi12d 473 |
. . . 4
⊢ (𝑤 = suc 𝑧 → (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))) ↔ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))))) |
| 96 | 95 | rspcev 2868 |
. . 3
⊢ ((suc
𝑧 ∈ 𝑋 ∧ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)))) → ∃𝑤 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)))) |
| 97 | 9, 20, 92, 96 | syl12anc 1247 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢)))) |
| 98 | | vex 2766 |
. . . . . 6
⊢ 𝑧 ∈ V |
| 99 | | opexg 4261 |
. . . . . 6
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ V) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
| 100 | 98, 77, 99 | sylancr 414 |
. . . . 5
⊢ (𝜑 → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
| 101 | | snexg 4217 |
. . . . 5
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) |
| 102 | 100, 101 | syl 14 |
. . . 4
⊢ (𝜑 → {〈𝑧, (𝐺‘𝑔)〉} ∈ V) |
| 103 | | unexg 4478 |
. . . 4
⊢ ((𝑔 ∈ V ∧ {〈𝑧, (𝐺‘𝑔)〉} ∈ V) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
| 104 | 23, 102, 103 | sylancr 414 |
. . 3
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V) |
| 105 | 14 | tfr1onlem3ag 6395 |
. . 3
⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ V → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴 ↔ ∃𝑤 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))))) |
| 106 | 104, 105 | syl 14 |
. 2
⊢ (𝜑 → ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴 ↔ ∃𝑤 ∈ 𝑋 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})‘𝑢) = (𝐺‘((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ↾ 𝑢))))) |
| 107 | 97, 106 | mpbird 167 |
1
⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) |