ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemsucaccv GIF version

Theorem tfr1onlemsucaccv 6336
Description: Lemma for tfr1on 6345. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemsucaccv.yx (𝜑𝑌𝑋)
tfr1onlemsucaccv.zy (𝜑𝑧𝑌)
tfr1onlemsucaccv.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlemsucaccv.gfn (𝜑𝑔 Fn 𝑧)
tfr1onlemsucaccv.gacc (𝜑𝑔𝐴)
Assertion
Ref Expression
tfr1onlemsucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem tfr1onlemsucaccv
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4399 . . . . 5 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
21eleq1d 2246 . . . 4 (𝑥 = 𝑧 → (suc 𝑥𝑋 ↔ suc 𝑧𝑋))
3 tfr1onlemsucaccv.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
43ralrimiva 2550 . . . 4 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
5 tfr1onlemsucaccv.zy . . . . 5 (𝜑𝑧𝑌)
6 tfr1onlemsucaccv.yx . . . . 5 (𝜑𝑌𝑋)
7 elunii 3812 . . . . 5 ((𝑧𝑌𝑌𝑋) → 𝑧 𝑋)
85, 6, 7syl2anc 411 . . . 4 (𝜑𝑧 𝑋)
92, 4, 8rspcdva 2846 . . 3 (𝜑 → suc 𝑧𝑋)
10 tfr1on.f . . . 4 𝐹 = recs(𝐺)
11 tfr1on.g . . . 4 (𝜑 → Fun 𝐺)
12 tfr1on.x . . . 4 (𝜑 → Ord 𝑋)
13 tfr1on.ex . . . 4 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
14 tfr1onlemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
155, 6jca 306 . . . . 5 (𝜑 → (𝑧𝑌𝑌𝑋))
16 ordtr1 4385 . . . . 5 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
1712, 15, 16sylc 62 . . . 4 (𝜑𝑧𝑋)
18 tfr1onlemsucaccv.gfn . . . 4 (𝜑𝑔 Fn 𝑧)
19 tfr1onlemsucaccv.gacc . . . 4 (𝜑𝑔𝐴)
2010, 11, 12, 13, 14, 17, 18, 19tfr1onlemsucfn 6335 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
21 vex 2740 . . . . . 6 𝑢 ∈ V
2221elsuc 4403 . . . . 5 (𝑢 ∈ suc 𝑧 ↔ (𝑢𝑧𝑢 = 𝑧))
23 vex 2740 . . . . . . . . . . 11 𝑔 ∈ V
2414tfr1onlem3ag 6332 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
2523, 24ax-mp 5 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
2619, 25sylib 122 . . . . . . . . 9 (𝜑 → ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
27 simprrr 540 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
28 simprrl 539 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑔 Fn 𝑣)
2918adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑔 Fn 𝑧)
30 fndmu 5313 . . . . . . . . . . . 12 ((𝑔 Fn 𝑣𝑔 Fn 𝑧) → 𝑣 = 𝑧)
3128, 29, 30syl2anc 411 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑣 = 𝑧)
3231raleqdv 2678 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → (∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3327, 32mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3426, 33rexlimddv 2599 . . . . . . . 8 (𝜑 → ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3534r19.21bi 2565 . . . . . . 7 ((𝜑𝑢𝑧) → (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
36 ordelon 4380 . . . . . . . . . . . . 13 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
3712, 17, 36syl2anc 411 . . . . . . . . . . . 12 (𝜑𝑧 ∈ On)
38 onelon 4381 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑢𝑧) → 𝑢 ∈ On)
3937, 38sylan 283 . . . . . . . . . . 11 ((𝜑𝑢𝑧) → 𝑢 ∈ On)
40 eloni 4372 . . . . . . . . . . 11 (𝑢 ∈ On → Ord 𝑢)
41 ordirr 4538 . . . . . . . . . . 11 (Ord 𝑢 → ¬ 𝑢𝑢)
4239, 40, 413syl 17 . . . . . . . . . 10 ((𝜑𝑢𝑧) → ¬ 𝑢𝑢)
43 elequ2 2153 . . . . . . . . . . . 12 (𝑧 = 𝑢 → (𝑢𝑧𝑢𝑢))
4443biimpcd 159 . . . . . . . . . . 11 (𝑢𝑧 → (𝑧 = 𝑢𝑢𝑢))
4544adantl 277 . . . . . . . . . 10 ((𝜑𝑢𝑧) → (𝑧 = 𝑢𝑢𝑢))
4642, 45mtod 663 . . . . . . . . 9 ((𝜑𝑢𝑧) → ¬ 𝑧 = 𝑢)
4746neqned 2354 . . . . . . . 8 ((𝜑𝑢𝑧) → 𝑧𝑢)
48 fvunsng 5706 . . . . . . . 8 ((𝑢 ∈ V ∧ 𝑧𝑢) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝑔𝑢))
4921, 47, 48sylancr 414 . . . . . . 7 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝑔𝑢))
50 eloni 4372 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
5137, 50syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
52 ordelss 4376 . . . . . . . . . . 11 ((Ord 𝑧𝑢𝑧) → 𝑢𝑧)
5351, 52sylan 283 . . . . . . . . . 10 ((𝜑𝑢𝑧) → 𝑢𝑧)
54 resabs1 4932 . . . . . . . . . 10 (𝑢𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))
5553, 54syl 14 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))
56 ordirr 4538 . . . . . . . . . . . . 13 (Ord 𝑧 → ¬ 𝑧𝑧)
5751, 56syl 14 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧𝑧)
58 fsnunres 5714 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
5918, 57, 58syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
6059reseq1d 4902 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
6160adantr 276 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
6255, 61eqtr3d 2212 . . . . . . . 8 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = (𝑔𝑢))
6362fveq2d 5515 . . . . . . 7 ((𝜑𝑢𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) = (𝐺‘(𝑔𝑢)))
6435, 49, 633eqtr4d 2220 . . . . . 6 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
65 fneq2 5301 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
6665imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
6766albidv 1824 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
68133expia 1205 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
6968alrimiv 1874 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
7069ralrimiva 2550 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
7167, 70, 17rspcdva 2846 . . . . . . . . . 10 (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
72 fneq1 5300 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
73 fveq2 5511 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
7473eleq1d 2246 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
7572, 74imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
7675spv 1860 . . . . . . . . . 10 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
7771, 18, 76sylc 62 . . . . . . . . 9 (𝜑 → (𝐺𝑔) ∈ V)
78 fndm 5311 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
7918, 78syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑔 = 𝑧)
8057, 79neleqtrrd 2276 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
81 fsnunfv 5713 . . . . . . . . 9 ((𝑧𝑌 ∧ (𝐺𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
825, 77, 80, 81syl3anc 1238 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
8382adantr 276 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
84 simpr 110 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → 𝑢 = 𝑧)
8584fveq2d 5515 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧))
86 reseq2 4898 . . . . . . . . 9 (𝑢 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧))
8786, 59sylan9eqr 2232 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = 𝑔)
8887fveq2d 5515 . . . . . . 7 ((𝜑𝑢 = 𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) = (𝐺𝑔))
8983, 85, 883eqtr4d 2220 . . . . . 6 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9064, 89jaodan 797 . . . . 5 ((𝜑 ∧ (𝑢𝑧𝑢 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9122, 90sylan2b 287 . . . 4 ((𝜑𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9291ralrimiva 2550 . . 3 (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
93 fneq2 5301 . . . . 5 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧))
94 raleq 2672 . . . . 5 (𝑤 = suc 𝑧 → (∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
9593, 94anbi12d 473 . . . 4 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
9695rspcev 2841 . . 3 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))) → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
979, 20, 92, 96syl12anc 1236 . 2 (𝜑 → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
98 vex 2740 . . . . . 6 𝑧 ∈ V
99 opexg 4225 . . . . . 6 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
10098, 77, 99sylancr 414 . . . . 5 (𝜑 → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
101 snexg 4181 . . . . 5 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
102100, 101syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
103 unexg 4440 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
10423, 102, 103sylancr 414 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
10514tfr1onlem3ag 6332 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
106104, 105syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
10797, 106mpbird 167 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978  wal 1351   = wceq 1353  wcel 2148  {cab 2163  wne 2347  wral 2455  wrex 2456  Vcvv 2737  cun 3127  wss 3129  {csn 3591  cop 3594   cuni 3807  Ord word 4359  Oncon0 4360  suc csuc 4362  dom cdm 4623  cres 4625  Fun wfun 5206   Fn wfn 5207  cfv 5212  recscrecs 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-res 4635  df-iota 5174  df-fun 5214  df-fn 5215  df-fv 5220
This theorem is referenced by:  tfr1onlembacc  6337  tfr1onlemres  6344
  Copyright terms: Public domain W3C validator