ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemsucaccv GIF version

Theorem tfr1onlemsucaccv 6320
Description: Lemma for tfr1on 6329. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemsucaccv.yx (𝜑𝑌𝑋)
tfr1onlemsucaccv.zy (𝜑𝑧𝑌)
tfr1onlemsucaccv.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlemsucaccv.gfn (𝜑𝑔 Fn 𝑧)
tfr1onlemsucaccv.gacc (𝜑𝑔𝐴)
Assertion
Ref Expression
tfr1onlemsucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem tfr1onlemsucaccv
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4387 . . . . 5 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
21eleq1d 2239 . . . 4 (𝑥 = 𝑧 → (suc 𝑥𝑋 ↔ suc 𝑧𝑋))
3 tfr1onlemsucaccv.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
43ralrimiva 2543 . . . 4 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
5 tfr1onlemsucaccv.zy . . . . 5 (𝜑𝑧𝑌)
6 tfr1onlemsucaccv.yx . . . . 5 (𝜑𝑌𝑋)
7 elunii 3801 . . . . 5 ((𝑧𝑌𝑌𝑋) → 𝑧 𝑋)
85, 6, 7syl2anc 409 . . . 4 (𝜑𝑧 𝑋)
92, 4, 8rspcdva 2839 . . 3 (𝜑 → suc 𝑧𝑋)
10 tfr1on.f . . . 4 𝐹 = recs(𝐺)
11 tfr1on.g . . . 4 (𝜑 → Fun 𝐺)
12 tfr1on.x . . . 4 (𝜑 → Ord 𝑋)
13 tfr1on.ex . . . 4 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
14 tfr1onlemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
155, 6jca 304 . . . . 5 (𝜑 → (𝑧𝑌𝑌𝑋))
16 ordtr1 4373 . . . . 5 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
1712, 15, 16sylc 62 . . . 4 (𝜑𝑧𝑋)
18 tfr1onlemsucaccv.gfn . . . 4 (𝜑𝑔 Fn 𝑧)
19 tfr1onlemsucaccv.gacc . . . 4 (𝜑𝑔𝐴)
2010, 11, 12, 13, 14, 17, 18, 19tfr1onlemsucfn 6319 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
21 vex 2733 . . . . . 6 𝑢 ∈ V
2221elsuc 4391 . . . . 5 (𝑢 ∈ suc 𝑧 ↔ (𝑢𝑧𝑢 = 𝑧))
23 vex 2733 . . . . . . . . . . 11 𝑔 ∈ V
2414tfr1onlem3ag 6316 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
2523, 24ax-mp 5 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
2619, 25sylib 121 . . . . . . . . 9 (𝜑 → ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
27 simprrr 535 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
28 simprrl 534 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑔 Fn 𝑣)
2918adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑔 Fn 𝑧)
30 fndmu 5299 . . . . . . . . . . . 12 ((𝑔 Fn 𝑣𝑔 Fn 𝑧) → 𝑣 = 𝑧)
3128, 29, 30syl2anc 409 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑣 = 𝑧)
3231raleqdv 2671 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → (∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3327, 32mpbid 146 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3426, 33rexlimddv 2592 . . . . . . . 8 (𝜑 → ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3534r19.21bi 2558 . . . . . . 7 ((𝜑𝑢𝑧) → (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
36 ordelon 4368 . . . . . . . . . . . . 13 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
3712, 17, 36syl2anc 409 . . . . . . . . . . . 12 (𝜑𝑧 ∈ On)
38 onelon 4369 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑢𝑧) → 𝑢 ∈ On)
3937, 38sylan 281 . . . . . . . . . . 11 ((𝜑𝑢𝑧) → 𝑢 ∈ On)
40 eloni 4360 . . . . . . . . . . 11 (𝑢 ∈ On → Ord 𝑢)
41 ordirr 4526 . . . . . . . . . . 11 (Ord 𝑢 → ¬ 𝑢𝑢)
4239, 40, 413syl 17 . . . . . . . . . 10 ((𝜑𝑢𝑧) → ¬ 𝑢𝑢)
43 elequ2 2146 . . . . . . . . . . . 12 (𝑧 = 𝑢 → (𝑢𝑧𝑢𝑢))
4443biimpcd 158 . . . . . . . . . . 11 (𝑢𝑧 → (𝑧 = 𝑢𝑢𝑢))
4544adantl 275 . . . . . . . . . 10 ((𝜑𝑢𝑧) → (𝑧 = 𝑢𝑢𝑢))
4642, 45mtod 658 . . . . . . . . 9 ((𝜑𝑢𝑧) → ¬ 𝑧 = 𝑢)
4746neqned 2347 . . . . . . . 8 ((𝜑𝑢𝑧) → 𝑧𝑢)
48 fvunsng 5690 . . . . . . . 8 ((𝑢 ∈ V ∧ 𝑧𝑢) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝑔𝑢))
4921, 47, 48sylancr 412 . . . . . . 7 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝑔𝑢))
50 eloni 4360 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
5137, 50syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
52 ordelss 4364 . . . . . . . . . . 11 ((Ord 𝑧𝑢𝑧) → 𝑢𝑧)
5351, 52sylan 281 . . . . . . . . . 10 ((𝜑𝑢𝑧) → 𝑢𝑧)
54 resabs1 4920 . . . . . . . . . 10 (𝑢𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))
5553, 54syl 14 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))
56 ordirr 4526 . . . . . . . . . . . . 13 (Ord 𝑧 → ¬ 𝑧𝑧)
5751, 56syl 14 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧𝑧)
58 fsnunres 5698 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
5918, 57, 58syl2anc 409 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
6059reseq1d 4890 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
6160adantr 274 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
6255, 61eqtr3d 2205 . . . . . . . 8 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = (𝑔𝑢))
6362fveq2d 5500 . . . . . . 7 ((𝜑𝑢𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) = (𝐺‘(𝑔𝑢)))
6435, 49, 633eqtr4d 2213 . . . . . 6 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
65 fneq2 5287 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
6665imbi1d 230 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
6766albidv 1817 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
68133expia 1200 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
6968alrimiv 1867 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
7069ralrimiva 2543 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
7167, 70, 17rspcdva 2839 . . . . . . . . . 10 (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
72 fneq1 5286 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
73 fveq2 5496 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
7473eleq1d 2239 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
7572, 74imbi12d 233 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
7675spv 1853 . . . . . . . . . 10 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
7771, 18, 76sylc 62 . . . . . . . . 9 (𝜑 → (𝐺𝑔) ∈ V)
78 fndm 5297 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
7918, 78syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑔 = 𝑧)
8057, 79neleqtrrd 2269 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
81 fsnunfv 5697 . . . . . . . . 9 ((𝑧𝑌 ∧ (𝐺𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
825, 77, 80, 81syl3anc 1233 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
8382adantr 274 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
84 simpr 109 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → 𝑢 = 𝑧)
8584fveq2d 5500 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧))
86 reseq2 4886 . . . . . . . . 9 (𝑢 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧))
8786, 59sylan9eqr 2225 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = 𝑔)
8887fveq2d 5500 . . . . . . 7 ((𝜑𝑢 = 𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) = (𝐺𝑔))
8983, 85, 883eqtr4d 2213 . . . . . 6 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9064, 89jaodan 792 . . . . 5 ((𝜑 ∧ (𝑢𝑧𝑢 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9122, 90sylan2b 285 . . . 4 ((𝜑𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9291ralrimiva 2543 . . 3 (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
93 fneq2 5287 . . . . 5 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧))
94 raleq 2665 . . . . 5 (𝑤 = suc 𝑧 → (∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
9593, 94anbi12d 470 . . . 4 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
9695rspcev 2834 . . 3 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))) → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
979, 20, 92, 96syl12anc 1231 . 2 (𝜑 → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
98 vex 2733 . . . . . 6 𝑧 ∈ V
99 opexg 4213 . . . . . 6 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
10098, 77, 99sylancr 412 . . . . 5 (𝜑 → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
101 snexg 4170 . . . . 5 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
102100, 101syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
103 unexg 4428 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
10423, 102, 103sylancr 412 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
10514tfr1onlem3ag 6316 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
106104, 105syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
10797, 106mpbird 166 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973  wal 1346   = wceq 1348  wcel 2141  {cab 2156  wne 2340  wral 2448  wrex 2449  Vcvv 2730  cun 3119  wss 3121  {csn 3583  cop 3586   cuni 3796  Ord word 4347  Oncon0 4348  suc csuc 4350  dom cdm 4611  cres 4613  Fun wfun 5192   Fn wfn 5193  cfv 5198  recscrecs 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  tfr1onlembacc  6321  tfr1onlemres  6328
  Copyright terms: Public domain W3C validator