ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemsucaccv GIF version

Theorem tfr1onlemsucaccv 6427
Description: Lemma for tfr1on 6436. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemsucaccv.yx (𝜑𝑌𝑋)
tfr1onlemsucaccv.zy (𝜑𝑧𝑌)
tfr1onlemsucaccv.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlemsucaccv.gfn (𝜑𝑔 Fn 𝑧)
tfr1onlemsucaccv.gacc (𝜑𝑔𝐴)
Assertion
Ref Expression
tfr1onlemsucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem tfr1onlemsucaccv
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4449 . . . . 5 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
21eleq1d 2274 . . . 4 (𝑥 = 𝑧 → (suc 𝑥𝑋 ↔ suc 𝑧𝑋))
3 tfr1onlemsucaccv.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
43ralrimiva 2579 . . . 4 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
5 tfr1onlemsucaccv.zy . . . . 5 (𝜑𝑧𝑌)
6 tfr1onlemsucaccv.yx . . . . 5 (𝜑𝑌𝑋)
7 elunii 3855 . . . . 5 ((𝑧𝑌𝑌𝑋) → 𝑧 𝑋)
85, 6, 7syl2anc 411 . . . 4 (𝜑𝑧 𝑋)
92, 4, 8rspcdva 2882 . . 3 (𝜑 → suc 𝑧𝑋)
10 tfr1on.f . . . 4 𝐹 = recs(𝐺)
11 tfr1on.g . . . 4 (𝜑 → Fun 𝐺)
12 tfr1on.x . . . 4 (𝜑 → Ord 𝑋)
13 tfr1on.ex . . . 4 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
14 tfr1onlemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
155, 6jca 306 . . . . 5 (𝜑 → (𝑧𝑌𝑌𝑋))
16 ordtr1 4435 . . . . 5 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
1712, 15, 16sylc 62 . . . 4 (𝜑𝑧𝑋)
18 tfr1onlemsucaccv.gfn . . . 4 (𝜑𝑔 Fn 𝑧)
19 tfr1onlemsucaccv.gacc . . . 4 (𝜑𝑔𝐴)
2010, 11, 12, 13, 14, 17, 18, 19tfr1onlemsucfn 6426 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
21 vex 2775 . . . . . 6 𝑢 ∈ V
2221elsuc 4453 . . . . 5 (𝑢 ∈ suc 𝑧 ↔ (𝑢𝑧𝑢 = 𝑧))
23 vex 2775 . . . . . . . . . . 11 𝑔 ∈ V
2414tfr1onlem3ag 6423 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
2523, 24ax-mp 5 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
2619, 25sylib 122 . . . . . . . . 9 (𝜑 → ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
27 simprrr 540 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
28 simprrl 539 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑔 Fn 𝑣)
2918adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑔 Fn 𝑧)
30 fndmu 5377 . . . . . . . . . . . 12 ((𝑔 Fn 𝑣𝑔 Fn 𝑧) → 𝑣 = 𝑧)
3128, 29, 30syl2anc 411 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑣 = 𝑧)
3231raleqdv 2708 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → (∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3327, 32mpbid 147 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3426, 33rexlimddv 2628 . . . . . . . 8 (𝜑 → ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3534r19.21bi 2594 . . . . . . 7 ((𝜑𝑢𝑧) → (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
36 ordelon 4430 . . . . . . . . . . . . 13 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
3712, 17, 36syl2anc 411 . . . . . . . . . . . 12 (𝜑𝑧 ∈ On)
38 onelon 4431 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑢𝑧) → 𝑢 ∈ On)
3937, 38sylan 283 . . . . . . . . . . 11 ((𝜑𝑢𝑧) → 𝑢 ∈ On)
40 eloni 4422 . . . . . . . . . . 11 (𝑢 ∈ On → Ord 𝑢)
41 ordirr 4590 . . . . . . . . . . 11 (Ord 𝑢 → ¬ 𝑢𝑢)
4239, 40, 413syl 17 . . . . . . . . . 10 ((𝜑𝑢𝑧) → ¬ 𝑢𝑢)
43 elequ2 2181 . . . . . . . . . . . 12 (𝑧 = 𝑢 → (𝑢𝑧𝑢𝑢))
4443biimpcd 159 . . . . . . . . . . 11 (𝑢𝑧 → (𝑧 = 𝑢𝑢𝑢))
4544adantl 277 . . . . . . . . . 10 ((𝜑𝑢𝑧) → (𝑧 = 𝑢𝑢𝑢))
4642, 45mtod 665 . . . . . . . . 9 ((𝜑𝑢𝑧) → ¬ 𝑧 = 𝑢)
4746neqned 2383 . . . . . . . 8 ((𝜑𝑢𝑧) → 𝑧𝑢)
48 fvunsng 5778 . . . . . . . 8 ((𝑢 ∈ V ∧ 𝑧𝑢) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝑔𝑢))
4921, 47, 48sylancr 414 . . . . . . 7 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝑔𝑢))
50 eloni 4422 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
5137, 50syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
52 ordelss 4426 . . . . . . . . . . 11 ((Ord 𝑧𝑢𝑧) → 𝑢𝑧)
5351, 52sylan 283 . . . . . . . . . 10 ((𝜑𝑢𝑧) → 𝑢𝑧)
54 resabs1 4988 . . . . . . . . . 10 (𝑢𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))
5553, 54syl 14 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))
56 ordirr 4590 . . . . . . . . . . . . 13 (Ord 𝑧 → ¬ 𝑧𝑧)
5751, 56syl 14 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧𝑧)
58 fsnunres 5786 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
5918, 57, 58syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
6059reseq1d 4958 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
6160adantr 276 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
6255, 61eqtr3d 2240 . . . . . . . 8 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = (𝑔𝑢))
6362fveq2d 5580 . . . . . . 7 ((𝜑𝑢𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) = (𝐺‘(𝑔𝑢)))
6435, 49, 633eqtr4d 2248 . . . . . 6 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
65 fneq2 5363 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
6665imbi1d 231 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
6766albidv 1847 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
68133expia 1208 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
6968alrimiv 1897 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
7069ralrimiva 2579 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
7167, 70, 17rspcdva 2882 . . . . . . . . . 10 (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
72 fneq1 5362 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
73 fveq2 5576 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
7473eleq1d 2274 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
7572, 74imbi12d 234 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
7675spv 1883 . . . . . . . . . 10 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
7771, 18, 76sylc 62 . . . . . . . . 9 (𝜑 → (𝐺𝑔) ∈ V)
78 fndm 5373 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
7918, 78syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑔 = 𝑧)
8057, 79neleqtrrd 2304 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
81 fsnunfv 5785 . . . . . . . . 9 ((𝑧𝑌 ∧ (𝐺𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
825, 77, 80, 81syl3anc 1250 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
8382adantr 276 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
84 simpr 110 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → 𝑢 = 𝑧)
8584fveq2d 5580 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧))
86 reseq2 4954 . . . . . . . . 9 (𝑢 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧))
8786, 59sylan9eqr 2260 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = 𝑔)
8887fveq2d 5580 . . . . . . 7 ((𝜑𝑢 = 𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) = (𝐺𝑔))
8983, 85, 883eqtr4d 2248 . . . . . 6 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9064, 89jaodan 799 . . . . 5 ((𝜑 ∧ (𝑢𝑧𝑢 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9122, 90sylan2b 287 . . . 4 ((𝜑𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9291ralrimiva 2579 . . 3 (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
93 fneq2 5363 . . . . 5 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧))
94 raleq 2702 . . . . 5 (𝑤 = suc 𝑧 → (∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
9593, 94anbi12d 473 . . . 4 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
9695rspcev 2877 . . 3 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))) → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
979, 20, 92, 96syl12anc 1248 . 2 (𝜑 → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
98 vex 2775 . . . . . 6 𝑧 ∈ V
99 opexg 4272 . . . . . 6 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
10098, 77, 99sylancr 414 . . . . 5 (𝜑 → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
101 snexg 4228 . . . . 5 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
102100, 101syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
103 unexg 4490 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
10423, 102, 103sylancr 414 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
10514tfr1onlem3ag 6423 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
106104, 105syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
10797, 106mpbird 167 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981  wal 1371   = wceq 1373  wcel 2176  {cab 2191  wne 2376  wral 2484  wrex 2485  Vcvv 2772  cun 3164  wss 3166  {csn 3633  cop 3636   cuni 3850  Ord word 4409  Oncon0 4410  suc csuc 4412  dom cdm 4675  cres 4677  Fun wfun 5265   Fn wfn 5266  cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by:  tfr1onlembacc  6428  tfr1onlemres  6435
  Copyright terms: Public domain W3C validator