ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemsucaccv GIF version

Theorem tfr1onlemsucaccv 6309
Description: Lemma for tfr1on 6318. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemsucaccv.yx (𝜑𝑌𝑋)
tfr1onlemsucaccv.zy (𝜑𝑧𝑌)
tfr1onlemsucaccv.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlemsucaccv.gfn (𝜑𝑔 Fn 𝑧)
tfr1onlemsucaccv.gacc (𝜑𝑔𝐴)
Assertion
Ref Expression
tfr1onlemsucaccv (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Distinct variable groups:   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem tfr1onlemsucaccv
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4380 . . . . 5 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
21eleq1d 2235 . . . 4 (𝑥 = 𝑧 → (suc 𝑥𝑋 ↔ suc 𝑧𝑋))
3 tfr1onlemsucaccv.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
43ralrimiva 2539 . . . 4 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
5 tfr1onlemsucaccv.zy . . . . 5 (𝜑𝑧𝑌)
6 tfr1onlemsucaccv.yx . . . . 5 (𝜑𝑌𝑋)
7 elunii 3794 . . . . 5 ((𝑧𝑌𝑌𝑋) → 𝑧 𝑋)
85, 6, 7syl2anc 409 . . . 4 (𝜑𝑧 𝑋)
92, 4, 8rspcdva 2835 . . 3 (𝜑 → suc 𝑧𝑋)
10 tfr1on.f . . . 4 𝐹 = recs(𝐺)
11 tfr1on.g . . . 4 (𝜑 → Fun 𝐺)
12 tfr1on.x . . . 4 (𝜑 → Ord 𝑋)
13 tfr1on.ex . . . 4 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
14 tfr1onlemsucfn.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
155, 6jca 304 . . . . 5 (𝜑 → (𝑧𝑌𝑌𝑋))
16 ordtr1 4366 . . . . 5 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
1712, 15, 16sylc 62 . . . 4 (𝜑𝑧𝑋)
18 tfr1onlemsucaccv.gfn . . . 4 (𝜑𝑔 Fn 𝑧)
19 tfr1onlemsucaccv.gacc . . . 4 (𝜑𝑔𝐴)
2010, 11, 12, 13, 14, 17, 18, 19tfr1onlemsucfn 6308 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
21 vex 2729 . . . . . 6 𝑢 ∈ V
2221elsuc 4384 . . . . 5 (𝑢 ∈ suc 𝑧 ↔ (𝑢𝑧𝑢 = 𝑧))
23 vex 2729 . . . . . . . . . . 11 𝑔 ∈ V
2414tfr1onlem3ag 6305 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
2523, 24ax-mp 5 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
2619, 25sylib 121 . . . . . . . . 9 (𝜑 → ∃𝑣𝑋 (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
27 simprrr 530 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
28 simprrl 529 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑔 Fn 𝑣)
2918adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑔 Fn 𝑧)
30 fndmu 5289 . . . . . . . . . . . 12 ((𝑔 Fn 𝑣𝑔 Fn 𝑧) → 𝑣 = 𝑧)
3128, 29, 30syl2anc 409 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → 𝑣 = 𝑧)
3231raleqdv 2667 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → (∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3327, 32mpbid 146 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝑋 ∧ (𝑔 Fn 𝑣 ∧ ∀𝑢𝑣 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))) → ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3426, 33rexlimddv 2588 . . . . . . . 8 (𝜑 → ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3534r19.21bi 2554 . . . . . . 7 ((𝜑𝑢𝑧) → (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
36 ordelon 4361 . . . . . . . . . . . . 13 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
3712, 17, 36syl2anc 409 . . . . . . . . . . . 12 (𝜑𝑧 ∈ On)
38 onelon 4362 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑢𝑧) → 𝑢 ∈ On)
3937, 38sylan 281 . . . . . . . . . . 11 ((𝜑𝑢𝑧) → 𝑢 ∈ On)
40 eloni 4353 . . . . . . . . . . 11 (𝑢 ∈ On → Ord 𝑢)
41 ordirr 4519 . . . . . . . . . . 11 (Ord 𝑢 → ¬ 𝑢𝑢)
4239, 40, 413syl 17 . . . . . . . . . 10 ((𝜑𝑢𝑧) → ¬ 𝑢𝑢)
43 elequ2 2141 . . . . . . . . . . . 12 (𝑧 = 𝑢 → (𝑢𝑧𝑢𝑢))
4443biimpcd 158 . . . . . . . . . . 11 (𝑢𝑧 → (𝑧 = 𝑢𝑢𝑢))
4544adantl 275 . . . . . . . . . 10 ((𝜑𝑢𝑧) → (𝑧 = 𝑢𝑢𝑢))
4642, 45mtod 653 . . . . . . . . 9 ((𝜑𝑢𝑧) → ¬ 𝑧 = 𝑢)
4746neqned 2343 . . . . . . . 8 ((𝜑𝑢𝑧) → 𝑧𝑢)
48 fvunsng 5679 . . . . . . . 8 ((𝑢 ∈ V ∧ 𝑧𝑢) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝑔𝑢))
4921, 47, 48sylancr 411 . . . . . . 7 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝑔𝑢))
50 eloni 4353 . . . . . . . . . . . 12 (𝑧 ∈ On → Ord 𝑧)
5137, 50syl 14 . . . . . . . . . . 11 (𝜑 → Ord 𝑧)
52 ordelss 4357 . . . . . . . . . . 11 ((Ord 𝑧𝑢𝑧) → 𝑢𝑧)
5351, 52sylan 281 . . . . . . . . . 10 ((𝜑𝑢𝑧) → 𝑢𝑧)
54 resabs1 4913 . . . . . . . . . 10 (𝑢𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))
5553, 54syl 14 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))
56 ordirr 4519 . . . . . . . . . . . . 13 (Ord 𝑧 → ¬ 𝑧𝑧)
5751, 56syl 14 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑧𝑧)
58 fsnunres 5687 . . . . . . . . . . . 12 ((𝑔 Fn 𝑧 ∧ ¬ 𝑧𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
5918, 57, 58syl2anc 409 . . . . . . . . . . 11 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) = 𝑔)
6059reseq1d 4883 . . . . . . . . . 10 (𝜑 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
6160adantr 274 . . . . . . . . 9 ((𝜑𝑢𝑧) → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧) ↾ 𝑢) = (𝑔𝑢))
6255, 61eqtr3d 2200 . . . . . . . 8 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = (𝑔𝑢))
6362fveq2d 5490 . . . . . . 7 ((𝜑𝑢𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) = (𝐺‘(𝑔𝑢)))
6435, 49, 633eqtr4d 2208 . . . . . 6 ((𝜑𝑢𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
65 fneq2 5277 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓 Fn 𝑥𝑓 Fn 𝑧))
6665imbi1d 230 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
6766albidv 1812 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V)))
68133expia 1195 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
6968alrimiv 1862 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
7069ralrimiva 2539 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑋𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
7167, 70, 17rspcdva 2835 . . . . . . . . . 10 (𝜑 → ∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V))
72 fneq1 5276 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓 Fn 𝑧𝑔 Fn 𝑧))
73 fveq2 5486 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
7473eleq1d 2235 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
7572, 74imbi12d 233 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
7675spv 1848 . . . . . . . . . 10 (∀𝑓(𝑓 Fn 𝑧 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
7771, 18, 76sylc 62 . . . . . . . . 9 (𝜑 → (𝐺𝑔) ∈ V)
78 fndm 5287 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
7918, 78syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑔 = 𝑧)
8057, 79neleqtrrd 2265 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝑔)
81 fsnunfv 5686 . . . . . . . . 9 ((𝑧𝑌 ∧ (𝐺𝑔) ∈ V ∧ ¬ 𝑧 ∈ dom 𝑔) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
825, 77, 80, 81syl3anc 1228 . . . . . . . 8 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
8382adantr 274 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧) = (𝐺𝑔))
84 simpr 109 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → 𝑢 = 𝑧)
8584fveq2d 5490 . . . . . . 7 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑧))
86 reseq2 4879 . . . . . . . . 9 (𝑢 = 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑧))
8786, 59sylan9eqr 2221 . . . . . . . 8 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢) = 𝑔)
8887fveq2d 5490 . . . . . . 7 ((𝜑𝑢 = 𝑧) → (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) = (𝐺𝑔))
8983, 85, 883eqtr4d 2208 . . . . . 6 ((𝜑𝑢 = 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9064, 89jaodan 787 . . . . 5 ((𝜑 ∧ (𝑢𝑧𝑢 = 𝑧)) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9122, 90sylan2b 285 . . . 4 ((𝜑𝑢 ∈ suc 𝑧) → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
9291ralrimiva 2539 . . 3 (𝜑 → ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))
93 fneq2 5277 . . . . 5 (𝑤 = suc 𝑧 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧))
94 raleq 2661 . . . . 5 (𝑤 = suc 𝑧 → (∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)) ↔ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
9593, 94anbi12d 465 . . . 4 (𝑤 = suc 𝑧 → (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))) ↔ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
9695rspcev 2830 . . 3 ((suc 𝑧𝑋 ∧ ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧 ∧ ∀𝑢 ∈ suc 𝑧((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))) → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
979, 20, 92, 96syl12anc 1226 . 2 (𝜑 → ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢))))
98 vex 2729 . . . . . 6 𝑧 ∈ V
99 opexg 4206 . . . . . 6 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
10098, 77, 99sylancr 411 . . . . 5 (𝜑 → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
101 snexg 4163 . . . . 5 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
102100, 101syl 14 . . . 4 (𝜑 → {⟨𝑧, (𝐺𝑔)⟩} ∈ V)
103 unexg 4421 . . . 4 ((𝑔 ∈ V ∧ {⟨𝑧, (𝐺𝑔)⟩} ∈ V) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
10423, 102, 103sylancr 411 . . 3 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V)
10514tfr1onlem3ag 6305 . . 3 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ V → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
106104, 105syl 14 . 2 (𝜑 → ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴 ↔ ∃𝑤𝑋 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn 𝑤 ∧ ∀𝑢𝑤 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})‘𝑢) = (𝐺‘((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ↾ 𝑢)))))
10797, 106mpbird 166 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 968  wal 1341   = wceq 1343  wcel 2136  {cab 2151  wne 2336  wral 2444  wrex 2445  Vcvv 2726  cun 3114  wss 3116  {csn 3576  cop 3579   cuni 3789  Ord word 4340  Oncon0 4341  suc csuc 4343  dom cdm 4604  cres 4606  Fun wfun 5182   Fn wfn 5183  cfv 5188  recscrecs 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  tfr1onlembacc  6310  tfr1onlemres  6317
  Copyright terms: Public domain W3C validator