| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nsuceq0g | GIF version | ||
| Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.) |
| Ref | Expression |
|---|---|
| nsuceq0g | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | sucidg 4506 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
| 3 | eleq2 2293 | . . . 4 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
| 4 | 2, 3 | syl5ibcom 155 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
| 5 | 1, 4 | mtoi 668 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ suc 𝐴 = ∅) |
| 6 | 5 | neneqad 2479 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 suc csuc 4455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-suc 4461 |
| This theorem is referenced by: onsucelsucexmid 4621 peano3 4687 frec0g 6541 2on0 6570 zfz1iso 11058 |
| Copyright terms: Public domain | W3C validator |