| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nsuceq0g | GIF version | ||
| Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.) |
| Ref | Expression |
|---|---|
| nsuceq0g | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3472 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | sucidg 4481 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
| 3 | eleq2 2271 | . . . 4 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
| 4 | 2, 3 | syl5ibcom 155 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
| 5 | 1, 4 | mtoi 666 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ suc 𝐴 = ∅) |
| 6 | 5 | neneqad 2457 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ∅c0 3468 suc csuc 4430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-dif 3176 df-un 3178 df-nul 3469 df-sn 3649 df-suc 4436 |
| This theorem is referenced by: onsucelsucexmid 4596 peano3 4662 frec0g 6506 2on0 6535 zfz1iso 11023 |
| Copyright terms: Public domain | W3C validator |