Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nsuceq0g | GIF version |
Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.) |
Ref | Expression |
---|---|
nsuceq0g | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3399 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | sucidg 4379 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
3 | eleq2 2221 | . . . 4 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
4 | 2, 3 | syl5ibcom 154 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
5 | 1, 4 | mtoi 654 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ suc 𝐴 = ∅) |
6 | 5 | neneqad 2406 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 ∅c0 3395 suc csuc 4328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-v 2714 df-dif 3104 df-un 3106 df-nul 3396 df-sn 3567 df-suc 4334 |
This theorem is referenced by: onsucelsucexmid 4492 peano3 4558 frec0g 6347 2on0 6376 zfz1iso 10724 |
Copyright terms: Public domain | W3C validator |