ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsuceq0g GIF version

Theorem nsuceq0g 4420
Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.)
Assertion
Ref Expression
nsuceq0g (𝐴𝑉 → suc 𝐴 ≠ ∅)

Proof of Theorem nsuceq0g
StepHypRef Expression
1 noel 3428 . . 3 ¬ 𝐴 ∈ ∅
2 sucidg 4418 . . . 4 (𝐴𝑉𝐴 ∈ suc 𝐴)
3 eleq2 2241 . . . 4 (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴𝐴 ∈ ∅))
42, 3syl5ibcom 155 . . 3 (𝐴𝑉 → (suc 𝐴 = ∅ → 𝐴 ∈ ∅))
51, 4mtoi 664 . 2 (𝐴𝑉 → ¬ suc 𝐴 = ∅)
65neneqad 2426 1 (𝐴𝑉 → suc 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  wne 2347  c0 3424  suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-sn 3600  df-suc 4373
This theorem is referenced by:  onsucelsucexmid  4531  peano3  4597  frec0g  6400  2on0  6429  zfz1iso  10823
  Copyright terms: Public domain W3C validator