| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nsuceq0g | GIF version | ||
| Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.) | 
| Ref | Expression | 
|---|---|
| nsuceq0g | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | noel 3454 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | sucidg 4451 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
| 3 | eleq2 2260 | . . . 4 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
| 4 | 2, 3 | syl5ibcom 155 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) | 
| 5 | 1, 4 | mtoi 665 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ suc 𝐴 = ∅) | 
| 6 | 5 | neneqad 2446 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∅c0 3450 suc csuc 4400 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-suc 4406 | 
| This theorem is referenced by: onsucelsucexmid 4566 peano3 4632 frec0g 6455 2on0 6484 zfz1iso 10933 | 
| Copyright terms: Public domain | W3C validator |