| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nsuceq0g | GIF version | ||
| Description: No successor is empty. (Contributed by Jim Kingdon, 14-Oct-2018.) |
| Ref | Expression |
|---|---|
| nsuceq0g | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3464 | . . 3 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | sucidg 4463 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
| 3 | eleq2 2269 | . . . 4 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
| 4 | 2, 3 | syl5ibcom 155 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
| 5 | 1, 4 | mtoi 666 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ suc 𝐴 = ∅) |
| 6 | 5 | neneqad 2455 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ∅c0 3460 suc csuc 4412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 df-sn 3639 df-suc 4418 |
| This theorem is referenced by: onsucelsucexmid 4578 peano3 4644 frec0g 6483 2on0 6512 zfz1iso 10986 |
| Copyright terms: Public domain | W3C validator |