Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ne0i | GIF version |
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2746. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
ne0i | ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3420 | . 2 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) | |
2 | 1 | neneqad 2419 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ≠ wne 2340 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-nul 3415 |
This theorem is referenced by: ne0d 3422 ne0ii 3424 vn0 3425 inelcm 3475 rzal 3512 rexn0 3513 snnzg 3700 prnz 3705 tpnz 3708 brne0 4038 onn0 4385 nn0eln0 4604 ordge1n0im 6415 nnmord 6496 map0g 6666 phpm 6843 fiintim 6906 addclpi 7289 mulclpi 7290 uzn0 9502 iccsupr 9923 |
Copyright terms: Public domain | W3C validator |