| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ne0i | GIF version | ||
| Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2816. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| ne0i | ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 3497 | . 2 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) | |
| 2 | 1 | neneqad 2479 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ≠ wne 2400 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: ne0d 3499 ne0ii 3501 vn0 3502 inelcm 3552 rzal 3589 rexn0 3590 snnzg 3783 prnz 3789 tpnz 3792 brne0 4132 onn0 4490 nn0eln0 4711 ordge1n0im 6580 nnmord 6661 map0g 6833 phpm 7023 fiintim 7089 addclpi 7510 mulclpi 7511 uzn0 9734 iccsupr 10158 pfxn0 11215 ringn0 14018 |
| Copyright terms: Public domain | W3C validator |