ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ne0i GIF version

Theorem ne0i 3498
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2816. (Contributed by NM, 31-Dec-1993.)
Assertion
Ref Expression
ne0i (𝐵𝐴𝐴 ≠ ∅)

Proof of Theorem ne0i
StepHypRef Expression
1 n0i 3497 . 2 (𝐵𝐴 → ¬ 𝐴 = ∅)
21neneqad 2479 1 (𝐵𝐴𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wne 2400  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by:  ne0d  3499  ne0ii  3501  vn0  3502  inelcm  3552  rzal  3589  rexn0  3590  snnzg  3783  prnz  3789  tpnz  3792  brne0  4132  onn0  4490  nn0eln0  4711  ordge1n0im  6580  nnmord  6661  map0g  6833  phpm  7023  fiintim  7089  addclpi  7510  mulclpi  7511  uzn0  9734  iccsupr  10158  pfxn0  11215  ringn0  14018
  Copyright terms: Public domain W3C validator