ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ne0i GIF version

Theorem ne0i 3454
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2776. (Contributed by NM, 31-Dec-1993.)
Assertion
Ref Expression
ne0i (𝐵𝐴𝐴 ≠ ∅)

Proof of Theorem ne0i
StepHypRef Expression
1 n0i 3453 . 2 (𝐵𝐴 → ¬ 𝐴 = ∅)
21neneqad 2443 1 (𝐵𝐴𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wne 2364  c0 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3156  df-nul 3448
This theorem is referenced by:  ne0d  3455  ne0ii  3457  vn0  3458  inelcm  3508  rzal  3545  rexn0  3546  snnzg  3736  prnz  3741  tpnz  3744  brne0  4079  onn0  4432  nn0eln0  4653  ordge1n0im  6491  nnmord  6572  map0g  6744  phpm  6923  fiintim  6987  addclpi  7389  mulclpi  7390  uzn0  9611  iccsupr  10035  ringn0  13559
  Copyright terms: Public domain W3C validator