| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ne0i | GIF version | ||
| Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2787. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| ne0i | ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 3465 | . 2 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) | |
| 2 | 1 | neneqad 2454 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ≠ wne 2375 ∅c0 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-v 2773 df-dif 3167 df-nul 3460 |
| This theorem is referenced by: ne0d 3467 ne0ii 3469 vn0 3470 inelcm 3520 rzal 3557 rexn0 3558 snnzg 3749 prnz 3754 tpnz 3757 brne0 4092 onn0 4446 nn0eln0 4667 ordge1n0im 6521 nnmord 6602 map0g 6774 phpm 6961 fiintim 7027 addclpi 7439 mulclpi 7440 uzn0 9663 iccsupr 10087 ringn0 13764 |
| Copyright terms: Public domain | W3C validator |