| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ne0i | GIF version | ||
| Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2790. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| ne0i | ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 3470 | . 2 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) | |
| 2 | 1 | neneqad 2456 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ≠ wne 2377 ∅c0 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3172 df-nul 3465 |
| This theorem is referenced by: ne0d 3472 ne0ii 3474 vn0 3475 inelcm 3525 rzal 3562 rexn0 3563 snnzg 3755 prnz 3761 tpnz 3764 brne0 4101 onn0 4455 nn0eln0 4676 ordge1n0im 6535 nnmord 6616 map0g 6788 phpm 6977 fiintim 7043 addclpi 7460 mulclpi 7461 uzn0 9684 iccsupr 10108 pfxn0 11164 ringn0 13897 |
| Copyright terms: Public domain | W3C validator |