Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ne0i | GIF version |
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2742. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
ne0i | ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3414 | . 2 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) | |
2 | 1 | neneqad 2415 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ≠ wne 2336 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-nul 3410 |
This theorem is referenced by: ne0d 3416 ne0ii 3418 vn0 3419 inelcm 3469 rzal 3506 rexn0 3507 snnzg 3693 prnz 3698 tpnz 3701 brne0 4031 onn0 4378 nn0eln0 4597 ordge1n0im 6404 nnmord 6485 map0g 6654 phpm 6831 fiintim 6894 addclpi 7268 mulclpi 7269 uzn0 9481 iccsupr 9902 |
Copyright terms: Public domain | W3C validator |