ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ne0i GIF version

Theorem ne0i 3471
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2790. (Contributed by NM, 31-Dec-1993.)
Assertion
Ref Expression
ne0i (𝐵𝐴𝐴 ≠ ∅)

Proof of Theorem ne0i
StepHypRef Expression
1 n0i 3470 . 2 (𝐵𝐴 → ¬ 𝐴 = ∅)
21neneqad 2456 1 (𝐵𝐴𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  wne 2377  c0 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-v 2775  df-dif 3172  df-nul 3465
This theorem is referenced by:  ne0d  3472  ne0ii  3474  vn0  3475  inelcm  3525  rzal  3562  rexn0  3563  snnzg  3755  prnz  3761  tpnz  3764  brne0  4101  onn0  4455  nn0eln0  4676  ordge1n0im  6535  nnmord  6616  map0g  6788  phpm  6977  fiintim  7043  addclpi  7460  mulclpi  7461  uzn0  9684  iccsupr  10108  pfxn0  11164  ringn0  13897
  Copyright terms: Public domain W3C validator