ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0pi GIF version

Theorem nqnq0pi 6900
Description: A non-negative fraction is a positive fraction if its numerator and denominator are positive integers. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0pi ((𝐴N𝐵N) → [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q )

Proof of Theorem nqnq0pi
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 4430 . . 3 (⟨𝐴, 𝐵⟩ ∈ (N × N) ↔ (𝐴N𝐵N))
2 vex 2615 . . . . . . 7 𝑦 ∈ V
32elima2 4735 . . . . . 6 (𝑦 ∈ ( ~Q0 “ (N × N)) ↔ ∃𝑥(𝑥 ∈ (N × N) ∧ 𝑥 ~Q0 𝑦))
4 elxp 4418 . . . . . . . . . 10 (𝑥 ∈ (N × N) ↔ ∃𝑧𝑤(𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)))
54anbi1i 446 . . . . . . . . 9 ((𝑥 ∈ (N × N) ∧ 𝑥 ~Q0 𝑦) ↔ (∃𝑧𝑤(𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)) ∧ 𝑥 ~Q0 𝑦))
6 19.41vv 1826 . . . . . . . . 9 (∃𝑧𝑤((𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)) ∧ 𝑥 ~Q0 𝑦) ↔ (∃𝑧𝑤(𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)) ∧ 𝑥 ~Q0 𝑦))
75, 6bitr4i 185 . . . . . . . 8 ((𝑥 ∈ (N × N) ∧ 𝑥 ~Q0 𝑦) ↔ ∃𝑧𝑤((𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)) ∧ 𝑥 ~Q0 𝑦))
8 simplr 497 . . . . . . . . . . 11 (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)) ∧ 𝑥 ~Q0 𝑦) → (𝑧N𝑤N))
9 breq1 3814 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑧, 𝑤⟩ → (𝑥 ~Q0 𝑦 ↔ ⟨𝑧, 𝑤⟩ ~Q0 𝑦))
109adantr 270 . . . . . . . . . . . 12 ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)) → (𝑥 ~Q0 𝑦 ↔ ⟨𝑧, 𝑤⟩ ~Q0 𝑦))
1110biimpa 290 . . . . . . . . . . 11 (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)) ∧ 𝑥 ~Q0 𝑦) → ⟨𝑧, 𝑤⟩ ~Q0 𝑦)
12 id 19 . . . . . . . . . . . 12 (((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) → ((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦))
13 enq0er 6897 . . . . . . . . . . . . . . 15 ~Q0 Er (ω × N)
1413a1i 9 . . . . . . . . . . . . . 14 (((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) → ~Q0 Er (ω × N))
15 simpr 108 . . . . . . . . . . . . . 14 (((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) → ⟨𝑧, 𝑤⟩ ~Q0 𝑦)
1614, 15ercl2 6235 . . . . . . . . . . . . 13 (((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) → 𝑦 ∈ (ω × N))
17 elxp 4418 . . . . . . . . . . . . 13 (𝑦 ∈ (ω × N) ↔ ∃𝑢𝑣(𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N)))
1816, 17sylib 120 . . . . . . . . . . . 12 (((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) → ∃𝑢𝑣(𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N)))
19 19.42vv 1831 . . . . . . . . . . . 12 (∃𝑢𝑣(((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) ↔ (((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ ∃𝑢𝑣(𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))))
2012, 18, 19sylanbrc 408 . . . . . . . . . . 11 (((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) → ∃𝑢𝑣(((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))))
218, 11, 20syl2anc 403 . . . . . . . . . 10 (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)) ∧ 𝑥 ~Q0 𝑦) → ∃𝑢𝑣(((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))))
22 simprrl 506 . . . . . . . . . . . . 13 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → 𝑢 ∈ ω)
23 elni 6770 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧N ↔ (𝑧 ∈ ω ∧ 𝑧 ≠ ∅))
2423simprbi 269 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧N𝑧 ≠ ∅)
2524neneqd 2270 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧N → ¬ 𝑧 = ∅)
2625ad2antrr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧N𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → ¬ 𝑧 = ∅)
27 elni 6770 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣N ↔ (𝑣 ∈ ω ∧ 𝑣 ≠ ∅))
2827simprbi 269 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣N𝑣 ≠ ∅)
2928neneqd 2270 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣N → ¬ 𝑣 = ∅)
3029ad2antll 475 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧N𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → ¬ 𝑣 = ∅)
3126, 30jca 300 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧N𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → (¬ 𝑧 = ∅ ∧ ¬ 𝑣 = ∅))
32 pm4.56 840 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑧 = ∅ ∧ ¬ 𝑣 = ∅) ↔ ¬ (𝑧 = ∅ ∨ 𝑣 = ∅))
3331, 32sylib 120 . . . . . . . . . . . . . . . . . . . 20 (((𝑧N𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → ¬ (𝑧 = ∅ ∨ 𝑣 = ∅))
34 pinn 6771 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧N𝑧 ∈ ω)
3534ad2antrr 472 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧N𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → 𝑧 ∈ ω)
36 pinn 6771 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣N𝑣 ∈ ω)
3736ad2antll 475 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧N𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → 𝑣 ∈ ω)
38 nnm00 6218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ω ∧ 𝑣 ∈ ω) → ((𝑧 ·𝑜 𝑣) = ∅ ↔ (𝑧 = ∅ ∨ 𝑣 = ∅)))
3935, 37, 38syl2anc 403 . . . . . . . . . . . . . . . . . . . 20 (((𝑧N𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → ((𝑧 ·𝑜 𝑣) = ∅ ↔ (𝑧 = ∅ ∨ 𝑣 = ∅)))
4033, 39mtbird 631 . . . . . . . . . . . . . . . . . . 19 (((𝑧N𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → ¬ (𝑧 ·𝑜 𝑣) = ∅)
4140ad2ant2rl 495 . . . . . . . . . . . . . . . . . 18 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → ¬ (𝑧 ·𝑜 𝑣) = ∅)
42 breq2 3815 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = ⟨𝑢, 𝑣⟩ → (⟨𝑧, 𝑤⟩ ~Q0 𝑦 ↔ ⟨𝑧, 𝑤⟩ ~Q0𝑢, 𝑣⟩))
4342biimpac 292 . . . . . . . . . . . . . . . . . . . . 21 ((⟨𝑧, 𝑤⟩ ~Q0 𝑦𝑦 = ⟨𝑢, 𝑣⟩) → ⟨𝑧, 𝑤⟩ ~Q0𝑢, 𝑣⟩)
4443ad2ant2lr 494 . . . . . . . . . . . . . . . . . . . 20 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → ⟨𝑧, 𝑤⟩ ~Q0𝑢, 𝑣⟩)
45 enq0breq 6898 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → (⟨𝑧, 𝑤⟩ ~Q0𝑢, 𝑣⟩ ↔ (𝑧 ·𝑜 𝑣) = (𝑤 ·𝑜 𝑢)))
4634, 45sylanl1 394 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧N𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → (⟨𝑧, 𝑤⟩ ~Q0𝑢, 𝑣⟩ ↔ (𝑧 ·𝑜 𝑣) = (𝑤 ·𝑜 𝑢)))
4746ad2ant2rl 495 . . . . . . . . . . . . . . . . . . . 20 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → (⟨𝑧, 𝑤⟩ ~Q0𝑢, 𝑣⟩ ↔ (𝑧 ·𝑜 𝑣) = (𝑤 ·𝑜 𝑢)))
4844, 47mpbid 145 . . . . . . . . . . . . . . . . . . 19 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → (𝑧 ·𝑜 𝑣) = (𝑤 ·𝑜 𝑢))
4948eqeq1d 2091 . . . . . . . . . . . . . . . . . 18 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → ((𝑧 ·𝑜 𝑣) = ∅ ↔ (𝑤 ·𝑜 𝑢) = ∅))
5041, 49mtbid 630 . . . . . . . . . . . . . . . . 17 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → ¬ (𝑤 ·𝑜 𝑢) = ∅)
51 pinn 6771 . . . . . . . . . . . . . . . . . . . 20 (𝑤N𝑤 ∈ ω)
52 nnm00 6218 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ω ∧ 𝑢 ∈ ω) → ((𝑤 ·𝑜 𝑢) = ∅ ↔ (𝑤 = ∅ ∨ 𝑢 = ∅)))
5351, 52sylan 277 . . . . . . . . . . . . . . . . . . 19 ((𝑤N𝑢 ∈ ω) → ((𝑤 ·𝑜 𝑢) = ∅ ↔ (𝑤 = ∅ ∨ 𝑢 = ∅)))
5453ad2ant2lr 494 . . . . . . . . . . . . . . . . . 18 (((𝑧N𝑤N) ∧ (𝑢 ∈ ω ∧ 𝑣N)) → ((𝑤 ·𝑜 𝑢) = ∅ ↔ (𝑤 = ∅ ∨ 𝑢 = ∅)))
5554ad2ant2rl 495 . . . . . . . . . . . . . . . . 17 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → ((𝑤 ·𝑜 𝑢) = ∅ ↔ (𝑤 = ∅ ∨ 𝑢 = ∅)))
5650, 55mtbid 630 . . . . . . . . . . . . . . . 16 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → ¬ (𝑤 = ∅ ∨ 𝑢 = ∅))
57 pm4.56 840 . . . . . . . . . . . . . . . 16 ((¬ 𝑤 = ∅ ∧ ¬ 𝑢 = ∅) ↔ ¬ (𝑤 = ∅ ∨ 𝑢 = ∅))
5856, 57sylibr 132 . . . . . . . . . . . . . . 15 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → (¬ 𝑤 = ∅ ∧ ¬ 𝑢 = ∅))
5958simprd 112 . . . . . . . . . . . . . 14 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → ¬ 𝑢 = ∅)
6059neneqad 2328 . . . . . . . . . . . . 13 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → 𝑢 ≠ ∅)
61 elni 6770 . . . . . . . . . . . . 13 (𝑢N ↔ (𝑢 ∈ ω ∧ 𝑢 ≠ ∅))
6222, 60, 61sylanbrc 408 . . . . . . . . . . . 12 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → 𝑢N)
63 simprrr 507 . . . . . . . . . . . 12 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → 𝑣N)
64 eleq1 2145 . . . . . . . . . . . . . 14 (𝑦 = ⟨𝑢, 𝑣⟩ → (𝑦 ∈ (N × N) ↔ ⟨𝑢, 𝑣⟩ ∈ (N × N)))
65 opelxp 4430 . . . . . . . . . . . . . 14 (⟨𝑢, 𝑣⟩ ∈ (N × N) ↔ (𝑢N𝑣N))
6664, 65syl6bb 194 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑢, 𝑣⟩ → (𝑦 ∈ (N × N) ↔ (𝑢N𝑣N)))
6766ad2antrl 474 . . . . . . . . . . . 12 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → (𝑦 ∈ (N × N) ↔ (𝑢N𝑣N)))
6862, 63, 67mpbir2and 886 . . . . . . . . . . 11 ((((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → 𝑦 ∈ (N × N))
6968exlimivv 1819 . . . . . . . . . 10 (∃𝑢𝑣(((𝑧N𝑤N) ∧ ⟨𝑧, 𝑤⟩ ~Q0 𝑦) ∧ (𝑦 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ ω ∧ 𝑣N))) → 𝑦 ∈ (N × N))
7021, 69syl 14 . . . . . . . . 9 (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)) ∧ 𝑥 ~Q0 𝑦) → 𝑦 ∈ (N × N))
7170exlimivv 1819 . . . . . . . 8 (∃𝑧𝑤((𝑥 = ⟨𝑧, 𝑤⟩ ∧ (𝑧N𝑤N)) ∧ 𝑥 ~Q0 𝑦) → 𝑦 ∈ (N × N))
727, 71sylbi 119 . . . . . . 7 ((𝑥 ∈ (N × N) ∧ 𝑥 ~Q0 𝑦) → 𝑦 ∈ (N × N))
7372exlimiv 1530 . . . . . 6 (∃𝑥(𝑥 ∈ (N × N) ∧ 𝑥 ~Q0 𝑦) → 𝑦 ∈ (N × N))
743, 73sylbi 119 . . . . 5 (𝑦 ∈ ( ~Q0 “ (N × N)) → 𝑦 ∈ (N × N))
7574ssriv 3014 . . . 4 ( ~Q0 “ (N × N)) ⊆ (N × N)
76 ecinxp 6297 . . . 4 ((( ~Q0 “ (N × N)) ⊆ (N × N) ∧ ⟨𝐴, 𝐵⟩ ∈ (N × N)) → [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩]( ~Q0 ∩ ((N × N) × (N × N))))
7775, 76mpan 415 . . 3 (⟨𝐴, 𝐵⟩ ∈ (N × N) → [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩]( ~Q0 ∩ ((N × N) × (N × N))))
781, 77sylbir 133 . 2 ((𝐴N𝐵N) → [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩]( ~Q0 ∩ ((N × N) × (N × N))))
79 enq0enq 6893 . . 3 ~Q = ( ~Q0 ∩ ((N × N) × (N × N)))
80 eceq2 6259 . . 3 ( ~Q = ( ~Q0 ∩ ((N × N) × (N × N))) → [⟨𝐴, 𝐵⟩] ~Q = [⟨𝐴, 𝐵⟩]( ~Q0 ∩ ((N × N) × (N × N))))
8179, 80ax-mp 7 . 2 [⟨𝐴, 𝐵⟩] ~Q = [⟨𝐴, 𝐵⟩]( ~Q0 ∩ ((N × N) × (N × N)))
8278, 81syl6eqr 2133 1 ((𝐴N𝐵N) → [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wex 1422  wcel 1434  wne 2249  cin 2983  wss 2984  c0 3269  cop 3425   class class class wbr 3811  ωcom 4368   × cxp 4399  cima 4404  (class class class)co 5591   ·𝑜 comu 6111   Er wer 6219  [cec 6220  Ncnpi 6734   ~Q ceq 6741   ~Q0 ceq0 6748
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-ni 6766  df-mi 6768  df-enq 6809  df-enq0 6886
This theorem is referenced by:  nqnq0  6903  nqpnq0nq  6915  nqnq0a  6916  nqnq0m  6917  prarloclemlo  6956  prarloclemcalc  6964
  Copyright terms: Public domain W3C validator