Step | Hyp | Ref
| Expression |
1 | | difexg 4123 |
. . . . . 6
⊢ (𝑋 ∈ Fin → (𝑋 ∖ {𝐴}) ∈ V) |
2 | 1 | 3ad2ant1 1008 |
. . . . 5
⊢ ((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑋 ∖ {𝐴}) ∈ V) |
3 | 2 | adantr 274 |
. . . 4
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ∈ V) |
4 | | enrefg 6730 |
. . . 4
⊢ ((𝑋 ∖ {𝐴}) ∈ V → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴})) |
5 | 3, 4 | syl 14 |
. . 3
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴})) |
6 | | sneq 3587 |
. . . . 5
⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
7 | 6 | difeq2d 3240 |
. . . 4
⊢ (𝐴 = 𝐵 → (𝑋 ∖ {𝐴}) = (𝑋 ∖ {𝐵})) |
8 | 7 | adantl 275 |
. . 3
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) = (𝑋 ∖ {𝐵})) |
9 | 5, 8 | breqtrd 4008 |
. 2
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) |
10 | 2 | adantr 274 |
. . 3
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ∈ V) |
11 | | eqid 2165 |
. . . 4
⊢ (𝑥 ∈ (𝑋 ∖ {𝐴}) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) = (𝑥 ∈ (𝑋 ∖ {𝐴}) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) |
12 | | iftrue 3525 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐴) |
13 | 12 | adantl 275 |
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐴) |
14 | | simpll2 1027 |
. . . . . . . 8
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → 𝐴 ∈ 𝑋) |
15 | 14 | adantr 274 |
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → 𝐴 ∈ 𝑋) |
16 | 13, 15 | eqeltrd 2243 |
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ 𝑋) |
17 | | simpllr 524 |
. . . . . . . 8
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → ¬ 𝐴 = 𝐵) |
18 | 13 | eqeq1d 2174 |
. . . . . . . 8
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → (if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐵 ↔ 𝐴 = 𝐵)) |
19 | 17, 18 | mtbird 663 |
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → ¬ if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐵) |
20 | 19 | neneqad 2415 |
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ≠ 𝐵) |
21 | | eldifsn 3703 |
. . . . . 6
⊢ (if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝑋 ∖ {𝐵}) ↔ (if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ 𝑋 ∧ if(𝑥 = 𝐵, 𝐴, 𝑥) ≠ 𝐵)) |
22 | 16, 20, 21 | sylanbrc 414 |
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝑋 ∖ {𝐵})) |
23 | | iffalse 3528 |
. . . . . . . 8
⊢ (¬
𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝑥) |
24 | 23 | adantl 275 |
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝑥) |
25 | | eldifi 3244 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑋 ∖ {𝐴}) → 𝑥 ∈ 𝑋) |
26 | 25 | ad2antlr 481 |
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ 𝑋) |
27 | 24, 26 | eqeltrd 2243 |
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ 𝑋) |
28 | | simpr 109 |
. . . . . . . 8
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 = 𝐵) |
29 | 24 | eqeq1d 2174 |
. . . . . . . 8
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → (if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐵 ↔ 𝑥 = 𝐵)) |
30 | 28, 29 | mtbird 663 |
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → ¬ if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐵) |
31 | 30 | neneqad 2415 |
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ≠ 𝐵) |
32 | 27, 31, 21 | sylanbrc 414 |
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝑋 ∖ {𝐵})) |
33 | | simpll1 1026 |
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → 𝑋 ∈ Fin) |
34 | 25 | adantl 275 |
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → 𝑥 ∈ 𝑋) |
35 | | simpll3 1028 |
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → 𝐵 ∈ 𝑋) |
36 | | fidceq 6835 |
. . . . . . 7
⊢ ((𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → DECID 𝑥 = 𝐵) |
37 | 33, 34, 35, 36 | syl3anc 1228 |
. . . . . 6
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → DECID 𝑥 = 𝐵) |
38 | | exmiddc 826 |
. . . . . 6
⊢
(DECID 𝑥 = 𝐵 → (𝑥 = 𝐵 ∨ ¬ 𝑥 = 𝐵)) |
39 | 37, 38 | syl 14 |
. . . . 5
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → (𝑥 = 𝐵 ∨ ¬ 𝑥 = 𝐵)) |
40 | 22, 32, 39 | mpjaodan 788 |
. . . 4
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝑋 ∖ {𝐵})) |
41 | | iftrue 3525 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝐵) |
42 | 41 | adantl 275 |
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝐵) |
43 | | simpl3 992 |
. . . . . . . 8
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑋) |
44 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) |
45 | 44 | neneqad 2415 |
. . . . . . . . 9
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
46 | 45 | necomd 2422 |
. . . . . . . 8
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ≠ 𝐴) |
47 | | eldifsn 3703 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝑋 ∖ {𝐴}) ↔ (𝐵 ∈ 𝑋 ∧ 𝐵 ≠ 𝐴)) |
48 | 43, 46, 47 | sylanbrc 414 |
. . . . . . 7
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ (𝑋 ∖ {𝐴})) |
49 | 48 | ad2antrr 480 |
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ 𝑦 = 𝐴) → 𝐵 ∈ (𝑋 ∖ {𝐴})) |
50 | 42, 49 | eqeltrd 2243 |
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) ∈ (𝑋 ∖ {𝐴})) |
51 | | iffalse 3528 |
. . . . . . 7
⊢ (¬
𝑦 = 𝐴 → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝑦) |
52 | 51 | adantl 275 |
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝑦) |
53 | | eldifi 3244 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑋 ∖ {𝐵}) → 𝑦 ∈ 𝑋) |
54 | 53 | ad2antlr 481 |
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ∈ 𝑋) |
55 | | simpr 109 |
. . . . . . . 8
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → ¬ 𝑦 = 𝐴) |
56 | 55 | neneqad 2415 |
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ≠ 𝐴) |
57 | | eldifsn 3703 |
. . . . . . 7
⊢ (𝑦 ∈ (𝑋 ∖ {𝐴}) ↔ (𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝐴)) |
58 | 54, 56, 57 | sylanbrc 414 |
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ∈ (𝑋 ∖ {𝐴})) |
59 | 52, 58 | eqeltrd 2243 |
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) ∈ (𝑋 ∖ {𝐴})) |
60 | | simpll1 1026 |
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → 𝑋 ∈ Fin) |
61 | 53 | adantl 275 |
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → 𝑦 ∈ 𝑋) |
62 | | simpll2 1027 |
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → 𝐴 ∈ 𝑋) |
63 | | fidceq 6835 |
. . . . . . 7
⊢ ((𝑋 ∈ Fin ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → DECID 𝑦 = 𝐴) |
64 | 60, 61, 62, 63 | syl3anc 1228 |
. . . . . 6
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → DECID 𝑦 = 𝐴) |
65 | | exmiddc 826 |
. . . . . 6
⊢
(DECID 𝑦 = 𝐴 → (𝑦 = 𝐴 ∨ ¬ 𝑦 = 𝐴)) |
66 | 64, 65 | syl 14 |
. . . . 5
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → (𝑦 = 𝐴 ∨ ¬ 𝑦 = 𝐴)) |
67 | 50, 59, 66 | mpjaodan 788 |
. . . 4
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → if(𝑦 = 𝐴, 𝐵, 𝑦) ∈ (𝑋 ∖ {𝐴})) |
68 | 12 | adantl 275 |
. . . . . . . . . 10
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐴) |
69 | 68 | eqeq2d 2177 |
. . . . . . . . 9
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥) ↔ 𝑦 = 𝐴)) |
70 | 69 | biimpar 295 |
. . . . . . . 8
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝐴) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) |
71 | 70 | a1d 22 |
. . . . . . 7
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝐴) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) |
72 | | simpr 109 |
. . . . . . . . . . 11
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) |
73 | 51 | eqeq2d 2177 |
. . . . . . . . . . . 12
⊢ (¬
𝑦 = 𝐴 → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑥 = 𝑦)) |
74 | 73 | ad2antlr 481 |
. . . . . . . . . . 11
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑥 = 𝑦)) |
75 | 72, 74 | mpbid 146 |
. . . . . . . . . 10
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑥 = 𝑦) |
76 | | simpllr 524 |
. . . . . . . . . 10
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑥 = 𝐵) |
77 | 75, 76 | eqtr3d 2200 |
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑦 = 𝐵) |
78 | | simprr 522 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → 𝑦 ∈ (𝑋 ∖ {𝐵})) |
79 | 78 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ∈ (𝑋 ∖ {𝐵})) |
80 | 79 | eldifbd 3128 |
. . . . . . . . . . 11
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) → ¬ 𝑦 ∈ {𝐵}) |
81 | 80 | adantr 274 |
. . . . . . . . . 10
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → ¬ 𝑦 ∈ {𝐵}) |
82 | | velsn 3593 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) |
83 | 81, 82 | sylnib 666 |
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → ¬ 𝑦 = 𝐵) |
84 | 77, 83 | pm2.21dd 610 |
. . . . . . . 8
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) |
85 | 84 | ex 114 |
. . . . . . 7
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) |
86 | | simpll1 1026 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → 𝑋 ∈ Fin) |
87 | 53 | ad2antll 483 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → 𝑦 ∈ 𝑋) |
88 | | simpll2 1027 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → 𝐴 ∈ 𝑋) |
89 | 86, 87, 88, 63 | syl3anc 1228 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → DECID 𝑦 = 𝐴) |
90 | 89, 65 | syl 14 |
. . . . . . . 8
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → (𝑦 = 𝐴 ∨ ¬ 𝑦 = 𝐴)) |
91 | 90 | adantr 274 |
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑦 = 𝐴 ∨ ¬ 𝑦 = 𝐴)) |
92 | 71, 85, 91 | mpjaodan 788 |
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) |
93 | 41 | eqeq2d 2177 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑥 = 𝐵)) |
94 | 93 | biimprcd 159 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝑦 = 𝐴 → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦))) |
95 | 94 | adantl 275 |
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑦 = 𝐴 → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦))) |
96 | 69, 95 | sylbid 149 |
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥) → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦))) |
97 | 92, 96 | impbid 128 |
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) |
98 | | simplr 520 |
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ 𝑦 = 𝐴) → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) |
99 | 41 | adantl 275 |
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝐵) |
100 | 98, 99 | eqtrd 2198 |
. . . . . . . 8
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ 𝑦 = 𝐴) → 𝑥 = 𝐵) |
101 | | simpllr 524 |
. . . . . . . 8
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ 𝑦 = 𝐴) → ¬ 𝑥 = 𝐵) |
102 | 100, 101 | pm2.21dd 610 |
. . . . . . 7
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ 𝑦 = 𝐴) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) |
103 | 23 | ad3antlr 485 |
. . . . . . . 8
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ ¬ 𝑦 = 𝐴) → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝑥) |
104 | | simplr 520 |
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ ¬ 𝑦 = 𝐴) → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) |
105 | 51 | adantl 275 |
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ ¬ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝑦) |
106 | 104, 105 | eqtrd 2198 |
. . . . . . . 8
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ ¬ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
107 | 103, 106 | eqtr2d 2199 |
. . . . . . 7
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ ¬ 𝑦 = 𝐴) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) |
108 | 90 | ad2antrr 480 |
. . . . . . 7
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → (𝑦 = 𝐴 ∨ ¬ 𝑦 = 𝐴)) |
109 | 102, 107,
108 | mpjaodan 788 |
. . . . . 6
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) |
110 | | simprl 521 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → 𝑥 ∈ (𝑋 ∖ {𝐴})) |
111 | 110 | eldifbd 3128 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → ¬ 𝑥 ∈ {𝐴}) |
112 | | velsn 3593 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
113 | 111, 112 | sylnib 666 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → ¬ 𝑥 = 𝐴) |
114 | 113 | ad2antrr 480 |
. . . . . . . . 9
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → ¬ 𝑥 = 𝐴) |
115 | | simpr 109 |
. . . . . . . . . . 11
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) |
116 | 23 | eqeq2d 2177 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 = 𝐵 → (𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥) ↔ 𝑦 = 𝑥)) |
117 | 116 | ad2antlr 481 |
. . . . . . . . . . 11
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → (𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥) ↔ 𝑦 = 𝑥)) |
118 | 115, 117 | mpbid 146 |
. . . . . . . . . 10
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → 𝑦 = 𝑥) |
119 | 118 | eqeq1d 2174 |
. . . . . . . . 9
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) |
120 | 114, 119 | mtbird 663 |
. . . . . . . 8
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → ¬ 𝑦 = 𝐴) |
121 | 120, 51 | syl 14 |
. . . . . . 7
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝑦) |
122 | 121, 118 | eqtr2d 2199 |
. . . . . 6
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) |
123 | 109, 122 | impbida 586 |
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) |
124 | 39 | adantrr 471 |
. . . . 5
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → (𝑥 = 𝐵 ∨ ¬ 𝑥 = 𝐵)) |
125 | 97, 123, 124 | mpjaodan 788 |
. . . 4
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) |
126 | 11, 40, 67, 125 | f1o2d 6043 |
. . 3
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → (𝑥 ∈ (𝑋 ∖ {𝐴}) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)):(𝑋 ∖ {𝐴})–1-1-onto→(𝑋 ∖ {𝐵})) |
127 | | f1oeng 6723 |
. . 3
⊢ (((𝑋 ∖ {𝐴}) ∈ V ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)):(𝑋 ∖ {𝐴})–1-1-onto→(𝑋 ∖ {𝐵})) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) |
128 | 10, 126, 127 | syl2anc 409 |
. 2
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) |
129 | | fidceq 6835 |
. . 3
⊢ ((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → DECID 𝐴 = 𝐵) |
130 | | exmiddc 826 |
. . 3
⊢
(DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
131 | 129, 130 | syl 14 |
. 2
⊢ ((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
132 | 9, 128, 131 | mpjaodan 788 |
1
⊢ ((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) |