| Step | Hyp | Ref
 | Expression | 
| 1 |   | difexg 4174 | 
. . . . . 6
⊢ (𝑋 ∈ Fin → (𝑋 ∖ {𝐴}) ∈ V) | 
| 2 | 1 | 3ad2ant1 1020 | 
. . . . 5
⊢ ((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑋 ∖ {𝐴}) ∈ V) | 
| 3 | 2 | adantr 276 | 
. . . 4
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ∈ V) | 
| 4 |   | enrefg 6823 | 
. . . 4
⊢ ((𝑋 ∖ {𝐴}) ∈ V → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴})) | 
| 5 | 3, 4 | syl 14 | 
. . 3
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴})) | 
| 6 |   | sneq 3633 | 
. . . . 5
⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | 
| 7 | 6 | difeq2d 3281 | 
. . . 4
⊢ (𝐴 = 𝐵 → (𝑋 ∖ {𝐴}) = (𝑋 ∖ {𝐵})) | 
| 8 | 7 | adantl 277 | 
. . 3
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) = (𝑋 ∖ {𝐵})) | 
| 9 | 5, 8 | breqtrd 4059 | 
. 2
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) | 
| 10 | 2 | adantr 276 | 
. . 3
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ∈ V) | 
| 11 |   | eqid 2196 | 
. . . 4
⊢ (𝑥 ∈ (𝑋 ∖ {𝐴}) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) = (𝑥 ∈ (𝑋 ∖ {𝐴}) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) | 
| 12 |   | iftrue 3566 | 
. . . . . . . 8
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐴) | 
| 13 | 12 | adantl 277 | 
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐴) | 
| 14 |   | simpll2 1039 | 
. . . . . . . 8
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → 𝐴 ∈ 𝑋) | 
| 15 | 14 | adantr 276 | 
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → 𝐴 ∈ 𝑋) | 
| 16 | 13, 15 | eqeltrd 2273 | 
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ 𝑋) | 
| 17 |   | simpllr 534 | 
. . . . . . . 8
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → ¬ 𝐴 = 𝐵) | 
| 18 | 13 | eqeq1d 2205 | 
. . . . . . . 8
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → (if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐵 ↔ 𝐴 = 𝐵)) | 
| 19 | 17, 18 | mtbird 674 | 
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → ¬ if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐵) | 
| 20 | 19 | neneqad 2446 | 
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ≠ 𝐵) | 
| 21 |   | eldifsn 3749 | 
. . . . . 6
⊢ (if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝑋 ∖ {𝐵}) ↔ (if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ 𝑋 ∧ if(𝑥 = 𝐵, 𝐴, 𝑥) ≠ 𝐵)) | 
| 22 | 16, 20, 21 | sylanbrc 417 | 
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝑋 ∖ {𝐵})) | 
| 23 |   | iffalse 3569 | 
. . . . . . . 8
⊢ (¬
𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝑥) | 
| 24 | 23 | adantl 277 | 
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝑥) | 
| 25 |   | eldifi 3285 | 
. . . . . . . 8
⊢ (𝑥 ∈ (𝑋 ∖ {𝐴}) → 𝑥 ∈ 𝑋) | 
| 26 | 25 | ad2antlr 489 | 
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ 𝑋) | 
| 27 | 24, 26 | eqeltrd 2273 | 
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ 𝑋) | 
| 28 |   | simpr 110 | 
. . . . . . . 8
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → ¬ 𝑥 = 𝐵) | 
| 29 | 24 | eqeq1d 2205 | 
. . . . . . . 8
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → (if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐵 ↔ 𝑥 = 𝐵)) | 
| 30 | 28, 29 | mtbird 674 | 
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → ¬ if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐵) | 
| 31 | 30 | neneqad 2446 | 
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ≠ 𝐵) | 
| 32 | 27, 31, 21 | sylanbrc 417 | 
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝑋 ∖ {𝐵})) | 
| 33 |   | simpll1 1038 | 
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → 𝑋 ∈ Fin) | 
| 34 | 25 | adantl 277 | 
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → 𝑥 ∈ 𝑋) | 
| 35 |   | simpll3 1040 | 
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → 𝐵 ∈ 𝑋) | 
| 36 |   | fidceq 6930 | 
. . . . . . 7
⊢ ((𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → DECID 𝑥 = 𝐵) | 
| 37 | 33, 34, 35, 36 | syl3anc 1249 | 
. . . . . 6
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → DECID 𝑥 = 𝐵) | 
| 38 |   | exmiddc 837 | 
. . . . . 6
⊢
(DECID 𝑥 = 𝐵 → (𝑥 = 𝐵 ∨ ¬ 𝑥 = 𝐵)) | 
| 39 | 37, 38 | syl 14 | 
. . . . 5
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → (𝑥 = 𝐵 ∨ ¬ 𝑥 = 𝐵)) | 
| 40 | 22, 32, 39 | mpjaodan 799 | 
. . . 4
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑥 ∈ (𝑋 ∖ {𝐴})) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝑋 ∖ {𝐵})) | 
| 41 |   | iftrue 3566 | 
. . . . . . 7
⊢ (𝑦 = 𝐴 → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝐵) | 
| 42 | 41 | adantl 277 | 
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝐵) | 
| 43 |   | simpl3 1004 | 
. . . . . . . 8
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑋) | 
| 44 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | 
| 45 | 44 | neneqad 2446 | 
. . . . . . . . 9
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) | 
| 46 | 45 | necomd 2453 | 
. . . . . . . 8
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ≠ 𝐴) | 
| 47 |   | eldifsn 3749 | 
. . . . . . . 8
⊢ (𝐵 ∈ (𝑋 ∖ {𝐴}) ↔ (𝐵 ∈ 𝑋 ∧ 𝐵 ≠ 𝐴)) | 
| 48 | 43, 46, 47 | sylanbrc 417 | 
. . . . . . 7
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ (𝑋 ∖ {𝐴})) | 
| 49 | 48 | ad2antrr 488 | 
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ 𝑦 = 𝐴) → 𝐵 ∈ (𝑋 ∖ {𝐴})) | 
| 50 | 42, 49 | eqeltrd 2273 | 
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) ∈ (𝑋 ∖ {𝐴})) | 
| 51 |   | iffalse 3569 | 
. . . . . . 7
⊢ (¬
𝑦 = 𝐴 → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝑦) | 
| 52 | 51 | adantl 277 | 
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝑦) | 
| 53 |   | eldifi 3285 | 
. . . . . . . 8
⊢ (𝑦 ∈ (𝑋 ∖ {𝐵}) → 𝑦 ∈ 𝑋) | 
| 54 | 53 | ad2antlr 489 | 
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ∈ 𝑋) | 
| 55 |   | simpr 110 | 
. . . . . . . 8
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → ¬ 𝑦 = 𝐴) | 
| 56 | 55 | neneqad 2446 | 
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ≠ 𝐴) | 
| 57 |   | eldifsn 3749 | 
. . . . . . 7
⊢ (𝑦 ∈ (𝑋 ∖ {𝐴}) ↔ (𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝐴)) | 
| 58 | 54, 56, 57 | sylanbrc 417 | 
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ∈ (𝑋 ∖ {𝐴})) | 
| 59 | 52, 58 | eqeltrd 2273 | 
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) ∧ ¬ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) ∈ (𝑋 ∖ {𝐴})) | 
| 60 |   | simpll1 1038 | 
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → 𝑋 ∈ Fin) | 
| 61 | 53 | adantl 277 | 
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → 𝑦 ∈ 𝑋) | 
| 62 |   | simpll2 1039 | 
. . . . . . 7
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → 𝐴 ∈ 𝑋) | 
| 63 |   | fidceq 6930 | 
. . . . . . 7
⊢ ((𝑋 ∈ Fin ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → DECID 𝑦 = 𝐴) | 
| 64 | 60, 61, 62, 63 | syl3anc 1249 | 
. . . . . 6
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → DECID 𝑦 = 𝐴) | 
| 65 |   | exmiddc 837 | 
. . . . . 6
⊢
(DECID 𝑦 = 𝐴 → (𝑦 = 𝐴 ∨ ¬ 𝑦 = 𝐴)) | 
| 66 | 64, 65 | syl 14 | 
. . . . 5
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → (𝑦 = 𝐴 ∨ ¬ 𝑦 = 𝐴)) | 
| 67 | 50, 59, 66 | mpjaodan 799 | 
. . . 4
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵})) → if(𝑦 = 𝐴, 𝐵, 𝑦) ∈ (𝑋 ∖ {𝐴})) | 
| 68 | 12 | adantl 277 | 
. . . . . . . . . 10
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝐴) | 
| 69 | 68 | eqeq2d 2208 | 
. . . . . . . . 9
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥) ↔ 𝑦 = 𝐴)) | 
| 70 | 69 | biimpar 297 | 
. . . . . . . 8
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝐴) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) | 
| 71 | 70 | a1d 22 | 
. . . . . . 7
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝐴) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) | 
| 72 |   | simpr 110 | 
. . . . . . . . . . 11
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) | 
| 73 | 51 | eqeq2d 2208 | 
. . . . . . . . . . . 12
⊢ (¬
𝑦 = 𝐴 → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑥 = 𝑦)) | 
| 74 | 73 | ad2antlr 489 | 
. . . . . . . . . . 11
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑥 = 𝑦)) | 
| 75 | 72, 74 | mpbid 147 | 
. . . . . . . . . 10
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑥 = 𝑦) | 
| 76 |   | simpllr 534 | 
. . . . . . . . . 10
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑥 = 𝐵) | 
| 77 | 75, 76 | eqtr3d 2231 | 
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑦 = 𝐵) | 
| 78 |   | simprr 531 | 
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → 𝑦 ∈ (𝑋 ∖ {𝐵})) | 
| 79 | 78 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) → 𝑦 ∈ (𝑋 ∖ {𝐵})) | 
| 80 | 79 | eldifbd 3169 | 
. . . . . . . . . . 11
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) → ¬ 𝑦 ∈ {𝐵}) | 
| 81 | 80 | adantr 276 | 
. . . . . . . . . 10
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → ¬ 𝑦 ∈ {𝐵}) | 
| 82 |   | velsn 3639 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | 
| 83 | 81, 82 | sylnib 677 | 
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → ¬ 𝑦 = 𝐵) | 
| 84 | 77, 83 | pm2.21dd 621 | 
. . . . . . . 8
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) | 
| 85 | 84 | ex 115 | 
. . . . . . 7
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) ∧ ¬ 𝑦 = 𝐴) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) | 
| 86 |   | simpll1 1038 | 
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → 𝑋 ∈ Fin) | 
| 87 | 53 | ad2antll 491 | 
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → 𝑦 ∈ 𝑋) | 
| 88 |   | simpll2 1039 | 
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → 𝐴 ∈ 𝑋) | 
| 89 | 86, 87, 88, 63 | syl3anc 1249 | 
. . . . . . . . 9
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → DECID 𝑦 = 𝐴) | 
| 90 | 89, 65 | syl 14 | 
. . . . . . . 8
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → (𝑦 = 𝐴 ∨ ¬ 𝑦 = 𝐴)) | 
| 91 | 90 | adantr 276 | 
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑦 = 𝐴 ∨ ¬ 𝑦 = 𝐴)) | 
| 92 | 71, 85, 91 | mpjaodan 799 | 
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) | 
| 93 | 41 | eqeq2d 2208 | 
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑥 = 𝐵)) | 
| 94 | 93 | biimprcd 160 | 
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝑦 = 𝐴 → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦))) | 
| 95 | 94 | adantl 277 | 
. . . . . . 7
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑦 = 𝐴 → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦))) | 
| 96 | 69, 95 | sylbid 150 | 
. . . . . 6
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥) → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦))) | 
| 97 | 92, 96 | impbid 129 | 
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) | 
| 98 |   | simplr 528 | 
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ 𝑦 = 𝐴) → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) | 
| 99 | 41 | adantl 277 | 
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝐵) | 
| 100 | 98, 99 | eqtrd 2229 | 
. . . . . . . 8
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ 𝑦 = 𝐴) → 𝑥 = 𝐵) | 
| 101 |   | simpllr 534 | 
. . . . . . . 8
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ 𝑦 = 𝐴) → ¬ 𝑥 = 𝐵) | 
| 102 | 100, 101 | pm2.21dd 621 | 
. . . . . . 7
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ 𝑦 = 𝐴) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) | 
| 103 | 23 | ad3antlr 493 | 
. . . . . . . 8
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ ¬ 𝑦 = 𝐴) → if(𝑥 = 𝐵, 𝐴, 𝑥) = 𝑥) | 
| 104 |   | simplr 528 | 
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ ¬ 𝑦 = 𝐴) → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) | 
| 105 | 51 | adantl 277 | 
. . . . . . . . 9
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ ¬ 𝑦 = 𝐴) → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝑦) | 
| 106 | 104, 105 | eqtrd 2229 | 
. . . . . . . 8
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ ¬ 𝑦 = 𝐴) → 𝑥 = 𝑦) | 
| 107 | 103, 106 | eqtr2d 2230 | 
. . . . . . 7
⊢
(((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) ∧ ¬ 𝑦 = 𝐴) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) | 
| 108 | 90 | ad2antrr 488 | 
. . . . . . 7
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → (𝑦 = 𝐴 ∨ ¬ 𝑦 = 𝐴)) | 
| 109 | 102, 107,
108 | mpjaodan 799 | 
. . . . . 6
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) | 
| 110 |   | simprl 529 | 
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → 𝑥 ∈ (𝑋 ∖ {𝐴})) | 
| 111 | 110 | eldifbd 3169 | 
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → ¬ 𝑥 ∈ {𝐴}) | 
| 112 |   | velsn 3639 | 
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | 
| 113 | 111, 112 | sylnib 677 | 
. . . . . . . . . 10
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → ¬ 𝑥 = 𝐴) | 
| 114 | 113 | ad2antrr 488 | 
. . . . . . . . 9
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → ¬ 𝑥 = 𝐴) | 
| 115 |   | simpr 110 | 
. . . . . . . . . . 11
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) | 
| 116 | 23 | eqeq2d 2208 | 
. . . . . . . . . . . 12
⊢ (¬
𝑥 = 𝐵 → (𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥) ↔ 𝑦 = 𝑥)) | 
| 117 | 116 | ad2antlr 489 | 
. . . . . . . . . . 11
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → (𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥) ↔ 𝑦 = 𝑥)) | 
| 118 | 115, 117 | mpbid 147 | 
. . . . . . . . . 10
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → 𝑦 = 𝑥) | 
| 119 | 118 | eqeq1d 2205 | 
. . . . . . . . 9
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | 
| 120 | 114, 119 | mtbird 674 | 
. . . . . . . 8
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → ¬ 𝑦 = 𝐴) | 
| 121 | 120, 51 | syl 14 | 
. . . . . . 7
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → if(𝑦 = 𝐴, 𝐵, 𝑦) = 𝑦) | 
| 122 | 121, 118 | eqtr2d 2230 | 
. . . . . 6
⊢
((((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) ∧ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥)) → 𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦)) | 
| 123 | 109, 122 | impbida 596 | 
. . . . 5
⊢
(((((𝑋 ∈ Fin
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) ∧ ¬ 𝑥 = 𝐵) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) | 
| 124 | 39 | adantrr 479 | 
. . . . 5
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → (𝑥 = 𝐵 ∨ ¬ 𝑥 = 𝐵)) | 
| 125 | 97, 123, 124 | mpjaodan 799 | 
. . . 4
⊢ ((((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ∧ 𝑦 ∈ (𝑋 ∖ {𝐵}))) → (𝑥 = if(𝑦 = 𝐴, 𝐵, 𝑦) ↔ 𝑦 = if(𝑥 = 𝐵, 𝐴, 𝑥))) | 
| 126 | 11, 40, 67, 125 | f1o2d 6128 | 
. . 3
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → (𝑥 ∈ (𝑋 ∖ {𝐴}) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)):(𝑋 ∖ {𝐴})–1-1-onto→(𝑋 ∖ {𝐵})) | 
| 127 |   | f1oeng 6816 | 
. . 3
⊢ (((𝑋 ∖ {𝐴}) ∈ V ∧ (𝑥 ∈ (𝑋 ∖ {𝐴}) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)):(𝑋 ∖ {𝐴})–1-1-onto→(𝑋 ∖ {𝐵})) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) | 
| 128 | 10, 126, 127 | syl2anc 411 | 
. 2
⊢ (((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ¬ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) | 
| 129 |   | fidceq 6930 | 
. . 3
⊢ ((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → DECID 𝐴 = 𝐵) | 
| 130 |   | exmiddc 837 | 
. . 3
⊢
(DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | 
| 131 | 129, 130 | syl 14 | 
. 2
⊢ ((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | 
| 132 | 9, 128, 131 | mpjaodan 799 | 
1
⊢ ((𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})) |