ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfan1 GIF version

Theorem nfan1 1552
Description: A closed form of nfan 1553. (Contributed by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
nfan1.1 𝑥𝜑
nfan1.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfan1 𝑥(𝜑𝜓)

Proof of Theorem nfan1
StepHypRef Expression
1 nfan1.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
21nfrd 1508 . . . 4 (𝜑 → (𝜓 → ∀𝑥𝜓))
32imdistani 442 . . 3 ((𝜑𝜓) → (𝜑 ∧ ∀𝑥𝜓))
4 nfan1.1 . . . . 5 𝑥𝜑
54nfri 1507 . . . 4 (𝜑 → ∀𝑥𝜑)
6519.28h 1550 . . 3 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
73, 6sylibr 133 . 2 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
87nfi 1450 1 𝑥(𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nfan  1553  sbcralt  3027  sbcrext  3028  csbiebt  3084  riota5f  5822  fproddivapf  11572
  Copyright terms: Public domain W3C validator