Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfan1 | GIF version |
Description: A closed form of nfan 1553. (Contributed by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
nfan1.1 | ⊢ Ⅎ𝑥𝜑 |
nfan1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfan1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | 1 | nfrd 1508 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
3 | 2 | imdistani 442 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ ∀𝑥𝜓)) |
4 | nfan1.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | nfri 1507 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) |
6 | 5 | 19.28h 1550 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
7 | 3, 6 | sylibr 133 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
8 | 7 | nfi 1450 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nfan 1553 sbcralt 3027 sbcrext 3028 csbiebt 3084 riota5f 5822 fproddivapf 11572 |
Copyright terms: Public domain | W3C validator |