| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfan1 | GIF version | ||
| Description: A closed form of nfan 1579. (Contributed by Mario Carneiro, 3-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfan1.1 | ⊢ Ⅎ𝑥𝜑 | 
| nfan1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfan1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | 1 | nfrd 1534 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | 
| 3 | 2 | imdistani 445 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ ∀𝑥𝜓)) | 
| 4 | nfan1.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | nfri 1533 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | 
| 6 | 5 | 19.28h 1576 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) | 
| 7 | 3, 6 | sylibr 134 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) | 
| 8 | 7 | nfi 1476 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: nfan 1579 sbcralt 3066 sbcrext 3067 csbiebt 3124 riota5f 5902 fproddivapf 11796 | 
| Copyright terms: Public domain | W3C validator |