ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fproddivapf GIF version

Theorem fproddivapf 11572
Description: The quotient of two finite products. A version of fproddivap 11571 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fproddivf.kph 𝑘𝜑
fproddivf.a (𝜑𝐴 ∈ Fin)
fproddivf.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fproddivf.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fproddivf.ap0 ((𝜑𝑘𝐴) → 𝐶 # 0)
Assertion
Ref Expression
fproddivapf (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fproddivapf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2308 . . . 4 𝑗(𝐵 / 𝐶)
2 nfcsb1v 3078 . . . . 5 𝑘𝑗 / 𝑘𝐵
3 nfcv 2308 . . . . 5 𝑘 /
4 nfcsb1v 3078 . . . . 5 𝑘𝑗 / 𝑘𝐶
52, 3, 4nfov 5872 . . . 4 𝑘(𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶)
6 csbeq1a 3054 . . . . 5 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
7 csbeq1a 3054 . . . . 5 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
86, 7oveq12d 5860 . . . 4 (𝑘 = 𝑗 → (𝐵 / 𝐶) = (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶))
91, 5, 8cbvprodi 11501 . . 3 𝑘𝐴 (𝐵 / 𝐶) = ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶)
109a1i 9 . 2 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶))
11 fproddivf.a . . 3 (𝜑𝐴 ∈ Fin)
12 fproddivf.kph . . . . . 6 𝑘𝜑
13 nfvd 1517 . . . . . 6 (𝜑 → Ⅎ𝑘 𝑗𝐴)
1412, 13nfan1 1552 . . . . 5 𝑘(𝜑𝑗𝐴)
152nfel1 2319 . . . . 5 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
1614, 15nfim 1560 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
17 eleq1w 2227 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1817anbi2d 460 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
196eleq1d 2235 . . . . 5 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
2018, 19imbi12d 233 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
21 fproddivf.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2216, 20, 21chvarfv 1688 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
234nfel1 2319 . . . . 5 𝑘𝑗 / 𝑘𝐶 ∈ ℂ
2414, 23nfim 1560 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)
257eleq1d 2235 . . . . 5 (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ 𝑗 / 𝑘𝐶 ∈ ℂ))
2618, 25imbi12d 233 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)))
27 fproddivf.c . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2824, 26, 27chvarfv 1688 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)
29 nfcv 2308 . . . . . 6 𝑘 #
30 nfcv 2308 . . . . . 6 𝑘0
314, 29, 30nfbr 4028 . . . . 5 𝑘𝑗 / 𝑘𝐶 # 0
3214, 31nfim 1560 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 # 0)
337breq1d 3992 . . . . 5 (𝑘 = 𝑗 → (𝐶 # 0 ↔ 𝑗 / 𝑘𝐶 # 0))
3418, 33imbi12d 233 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 # 0) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 # 0)))
35 fproddivf.ap0 . . . 4 ((𝜑𝑘𝐴) → 𝐶 # 0)
3632, 34, 35chvarfv 1688 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 # 0)
3711, 22, 28, 36fproddivap 11571 . 2 (𝜑 → ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶) = (∏𝑗𝐴 𝑗 / 𝑘𝐵 / ∏𝑗𝐴 𝑗 / 𝑘𝐶))
38 nfcv 2308 . . . . . 6 𝑗𝐵
3938, 2, 6cbvprodi 11501 . . . . 5 𝑘𝐴 𝐵 = ∏𝑗𝐴 𝑗 / 𝑘𝐵
4039eqcomi 2169 . . . 4 𝑗𝐴 𝑗 / 𝑘𝐵 = ∏𝑘𝐴 𝐵
4140a1i 9 . . 3 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐵 = ∏𝑘𝐴 𝐵)
42 nfcv 2308 . . . . 5 𝑗𝐶
437equcoms 1696 . . . . . 6 (𝑗 = 𝑘𝐶 = 𝑗 / 𝑘𝐶)
4443eqcomd 2171 . . . . 5 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝐶)
454, 42, 44cbvprodi 11501 . . . 4 𝑗𝐴 𝑗 / 𝑘𝐶 = ∏𝑘𝐴 𝐶
4645a1i 9 . . 3 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐶 = ∏𝑘𝐴 𝐶)
4741, 46oveq12d 5860 . 2 (𝜑 → (∏𝑗𝐴 𝑗 / 𝑘𝐵 / ∏𝑗𝐴 𝑗 / 𝑘𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
4810, 37, 473eqtrd 2202 1 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wnf 1448  wcel 2136  csb 3045   class class class wbr 3982  (class class class)co 5842  Fincfn 6706  cc 7751  0cc0 7753   # cap 8479   / cdiv 8568  cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator