ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fproddivapf GIF version

Theorem fproddivapf 12150
Description: The quotient of two finite products. A version of fproddivap 12149 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fproddivf.kph 𝑘𝜑
fproddivf.a (𝜑𝐴 ∈ Fin)
fproddivf.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fproddivf.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fproddivf.ap0 ((𝜑𝑘𝐴) → 𝐶 # 0)
Assertion
Ref Expression
fproddivapf (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fproddivapf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2372 . . . 4 𝑗(𝐵 / 𝐶)
2 nfcsb1v 3157 . . . . 5 𝑘𝑗 / 𝑘𝐵
3 nfcv 2372 . . . . 5 𝑘 /
4 nfcsb1v 3157 . . . . 5 𝑘𝑗 / 𝑘𝐶
52, 3, 4nfov 6037 . . . 4 𝑘(𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶)
6 csbeq1a 3133 . . . . 5 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
7 csbeq1a 3133 . . . . 5 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
86, 7oveq12d 6025 . . . 4 (𝑘 = 𝑗 → (𝐵 / 𝐶) = (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶))
91, 5, 8cbvprodi 12079 . . 3 𝑘𝐴 (𝐵 / 𝐶) = ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶)
109a1i 9 . 2 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶))
11 fproddivf.a . . 3 (𝜑𝐴 ∈ Fin)
12 fproddivf.kph . . . . . 6 𝑘𝜑
13 nfvd 1575 . . . . . 6 (𝜑 → Ⅎ𝑘 𝑗𝐴)
1412, 13nfan1 1610 . . . . 5 𝑘(𝜑𝑗𝐴)
152nfel1 2383 . . . . 5 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
1614, 15nfim 1618 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
17 eleq1w 2290 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1817anbi2d 464 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
196eleq1d 2298 . . . . 5 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
2018, 19imbi12d 234 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
21 fproddivf.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2216, 20, 21chvarfv 1746 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
234nfel1 2383 . . . . 5 𝑘𝑗 / 𝑘𝐶 ∈ ℂ
2414, 23nfim 1618 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)
257eleq1d 2298 . . . . 5 (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ 𝑗 / 𝑘𝐶 ∈ ℂ))
2618, 25imbi12d 234 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)))
27 fproddivf.c . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2824, 26, 27chvarfv 1746 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ ℂ)
29 nfcv 2372 . . . . . 6 𝑘 #
30 nfcv 2372 . . . . . 6 𝑘0
314, 29, 30nfbr 4130 . . . . 5 𝑘𝑗 / 𝑘𝐶 # 0
3214, 31nfim 1618 . . . 4 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 # 0)
337breq1d 4093 . . . . 5 (𝑘 = 𝑗 → (𝐶 # 0 ↔ 𝑗 / 𝑘𝐶 # 0))
3418, 33imbi12d 234 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐶 # 0) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 # 0)))
35 fproddivf.ap0 . . . 4 ((𝜑𝑘𝐴) → 𝐶 # 0)
3632, 34, 35chvarfv 1746 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐶 # 0)
3711, 22, 28, 36fproddivap 12149 . 2 (𝜑 → ∏𝑗𝐴 (𝑗 / 𝑘𝐵 / 𝑗 / 𝑘𝐶) = (∏𝑗𝐴 𝑗 / 𝑘𝐵 / ∏𝑗𝐴 𝑗 / 𝑘𝐶))
38 nfcv 2372 . . . . . 6 𝑗𝐵
3938, 2, 6cbvprodi 12079 . . . . 5 𝑘𝐴 𝐵 = ∏𝑗𝐴 𝑗 / 𝑘𝐵
4039eqcomi 2233 . . . 4 𝑗𝐴 𝑗 / 𝑘𝐵 = ∏𝑘𝐴 𝐵
4140a1i 9 . . 3 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐵 = ∏𝑘𝐴 𝐵)
42 nfcv 2372 . . . . 5 𝑗𝐶
437equcoms 1754 . . . . . 6 (𝑗 = 𝑘𝐶 = 𝑗 / 𝑘𝐶)
4443eqcomd 2235 . . . . 5 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝐶)
454, 42, 44cbvprodi 12079 . . . 4 𝑗𝐴 𝑗 / 𝑘𝐶 = ∏𝑘𝐴 𝐶
4645a1i 9 . . 3 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐶 = ∏𝑘𝐴 𝐶)
4741, 46oveq12d 6025 . 2 (𝜑 → (∏𝑗𝐴 𝑗 / 𝑘𝐵 / ∏𝑗𝐴 𝑗 / 𝑘𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
4810, 37, 473eqtrd 2266 1 (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wnf 1506  wcel 2200  csb 3124   class class class wbr 4083  (class class class)co 6007  Fincfn 6895  cc 8005  0cc0 8007   # cap 8736   / cdiv 8827  cprod 12069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator