| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fproddivapf | GIF version | ||
| Description: The quotient of two finite products. A version of fproddivap 11812 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fproddivf.kph | ⊢ Ⅎ𝑘𝜑 |
| fproddivf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fproddivf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fproddivf.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| fproddivf.ap0 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) |
| Ref | Expression |
|---|---|
| fproddivapf | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑗(𝐵 / 𝐶) | |
| 2 | nfcsb1v 3117 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 3 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑘 / | |
| 4 | nfcsb1v 3117 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 | |
| 5 | 2, 3, 4 | nfov 5955 | . . . 4 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) |
| 6 | csbeq1a 3093 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 7 | csbeq1a 3093 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) | |
| 8 | 6, 7 | oveq12d 5943 | . . . 4 ⊢ (𝑘 = 𝑗 → (𝐵 / 𝐶) = (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶)) |
| 9 | 1, 5, 8 | cbvprodi 11742 | . . 3 ⊢ ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶)) |
| 11 | fproddivf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 12 | fproddivf.kph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 13 | nfvd 1543 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑘 𝑗 ∈ 𝐴) | |
| 14 | 12, 13 | nfan1 1578 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
| 15 | 2 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
| 16 | 14, 15 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
| 17 | eleq1w 2257 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
| 18 | 17 | anbi2d 464 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
| 19 | 6 | eleq1d 2265 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
| 20 | 18, 19 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
| 21 | fproddivf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 22 | 16, 20, 21 | chvarfv 1714 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
| 23 | 4 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ |
| 24 | 14, 23 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
| 25 | 7 | eleq1d 2265 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ)) |
| 26 | 18, 25 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ))) |
| 27 | fproddivf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
| 28 | 24, 26, 27 | chvarfv 1714 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
| 29 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑘 # | |
| 30 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑘0 | |
| 31 | 4, 29, 30 | nfbr 4080 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 # 0 |
| 32 | 14, 31 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 # 0) |
| 33 | 7 | breq1d 4044 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 # 0 ↔ ⦋𝑗 / 𝑘⦌𝐶 # 0)) |
| 34 | 18, 33 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 # 0))) |
| 35 | fproddivf.ap0 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) | |
| 36 | 32, 34, 35 | chvarfv 1714 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 # 0) |
| 37 | 11, 22, 28, 36 | fproddivap 11812 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) = (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 / ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶)) |
| 38 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑗𝐵 | |
| 39 | 38, 2, 6 | cbvprodi 11742 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
| 40 | 39 | eqcomi 2200 | . . . 4 ⊢ ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 = ∏𝑘 ∈ 𝐴 𝐵 |
| 41 | 40 | a1i 9 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 = ∏𝑘 ∈ 𝐴 𝐵) |
| 42 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑗𝐶 | |
| 43 | 7 | equcoms 1722 | . . . . . 6 ⊢ (𝑗 = 𝑘 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) |
| 44 | 43 | eqcomd 2202 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐶 = 𝐶) |
| 45 | 4, 42, 44 | cbvprodi 11742 | . . . 4 ⊢ ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = ∏𝑘 ∈ 𝐴 𝐶 |
| 46 | 45 | a1i 9 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = ∏𝑘 ∈ 𝐴 𝐶) |
| 47 | 41, 46 | oveq12d 5943 | . 2 ⊢ (𝜑 → (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 / ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
| 48 | 10, 37, 47 | 3eqtrd 2233 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 ⦋csb 3084 class class class wbr 4034 (class class class)co 5925 Fincfn 6808 ℂcc 7894 0cc0 7896 # cap 8625 / cdiv 8716 ∏cprod 11732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-proddc 11733 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |