![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fproddivapf | GIF version |
Description: The quotient of two finite products. A version of fproddivap 11640 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fproddivf.kph | ⊢ Ⅎ𝑘𝜑 |
fproddivf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fproddivf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fproddivf.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
fproddivf.ap0 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) |
Ref | Expression |
---|---|
fproddivapf | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2319 | . . . 4 ⊢ Ⅎ𝑗(𝐵 / 𝐶) | |
2 | nfcsb1v 3092 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
3 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑘 / | |
4 | nfcsb1v 3092 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 | |
5 | 2, 3, 4 | nfov 5907 | . . . 4 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) |
6 | csbeq1a 3068 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
7 | csbeq1a 3068 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) | |
8 | 6, 7 | oveq12d 5895 | . . . 4 ⊢ (𝑘 = 𝑗 → (𝐵 / 𝐶) = (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶)) |
9 | 1, 5, 8 | cbvprodi 11570 | . . 3 ⊢ ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) |
10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶)) |
11 | fproddivf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
12 | fproddivf.kph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
13 | nfvd 1529 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑘 𝑗 ∈ 𝐴) | |
14 | 12, 13 | nfan1 1564 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
15 | 2 | nfel1 2330 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
16 | 14, 15 | nfim 1572 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
17 | eleq1w 2238 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
18 | 17 | anbi2d 464 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
19 | 6 | eleq1d 2246 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
20 | 18, 19 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
21 | fproddivf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
22 | 16, 20, 21 | chvarfv 1700 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
23 | 4 | nfel1 2330 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ |
24 | 14, 23 | nfim 1572 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
25 | 7 | eleq1d 2246 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ)) |
26 | 18, 25 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ))) |
27 | fproddivf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
28 | 24, 26, 27 | chvarfv 1700 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
29 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑘 # | |
30 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑘0 | |
31 | 4, 29, 30 | nfbr 4051 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 # 0 |
32 | 14, 31 | nfim 1572 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 # 0) |
33 | 7 | breq1d 4015 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 # 0 ↔ ⦋𝑗 / 𝑘⦌𝐶 # 0)) |
34 | 18, 33 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 # 0))) |
35 | fproddivf.ap0 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) | |
36 | 32, 34, 35 | chvarfv 1700 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 # 0) |
37 | 11, 22, 28, 36 | fproddivap 11640 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) = (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 / ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶)) |
38 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑗𝐵 | |
39 | 38, 2, 6 | cbvprodi 11570 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
40 | 39 | eqcomi 2181 | . . . 4 ⊢ ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 = ∏𝑘 ∈ 𝐴 𝐵 |
41 | 40 | a1i 9 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 = ∏𝑘 ∈ 𝐴 𝐵) |
42 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑗𝐶 | |
43 | 7 | equcoms 1708 | . . . . . 6 ⊢ (𝑗 = 𝑘 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) |
44 | 43 | eqcomd 2183 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐶 = 𝐶) |
45 | 4, 42, 44 | cbvprodi 11570 | . . . 4 ⊢ ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = ∏𝑘 ∈ 𝐴 𝐶 |
46 | 45 | a1i 9 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = ∏𝑘 ∈ 𝐴 𝐶) |
47 | 41, 46 | oveq12d 5895 | . 2 ⊢ (𝜑 → (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 / ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
48 | 10, 37, 47 | 3eqtrd 2214 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 Ⅎwnf 1460 ∈ wcel 2148 ⦋csb 3059 class class class wbr 4005 (class class class)co 5877 Fincfn 6742 ℂcc 7811 0cc0 7813 # cap 8540 / cdiv 8631 ∏cprod 11560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-ihash 10758 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-proddc 11561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |