![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fproddivapf | GIF version |
Description: The quotient of two finite products. A version of fproddivap 11773 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fproddivf.kph | ⊢ Ⅎ𝑘𝜑 |
fproddivf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fproddivf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fproddivf.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
fproddivf.ap0 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) |
Ref | Expression |
---|---|
fproddivapf | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑗(𝐵 / 𝐶) | |
2 | nfcsb1v 3113 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
3 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑘 / | |
4 | nfcsb1v 3113 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 | |
5 | 2, 3, 4 | nfov 5948 | . . . 4 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) |
6 | csbeq1a 3089 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
7 | csbeq1a 3089 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) | |
8 | 6, 7 | oveq12d 5936 | . . . 4 ⊢ (𝑘 = 𝑗 → (𝐵 / 𝐶) = (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶)) |
9 | 1, 5, 8 | cbvprodi 11703 | . . 3 ⊢ ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) |
10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶)) |
11 | fproddivf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
12 | fproddivf.kph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
13 | nfvd 1540 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑘 𝑗 ∈ 𝐴) | |
14 | 12, 13 | nfan1 1575 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
15 | 2 | nfel1 2347 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
16 | 14, 15 | nfim 1583 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
17 | eleq1w 2254 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
18 | 17 | anbi2d 464 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
19 | 6 | eleq1d 2262 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
20 | 18, 19 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
21 | fproddivf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
22 | 16, 20, 21 | chvarfv 1711 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
23 | 4 | nfel1 2347 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ |
24 | 14, 23 | nfim 1583 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
25 | 7 | eleq1d 2262 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ)) |
26 | 18, 25 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ))) |
27 | fproddivf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
28 | 24, 26, 27 | chvarfv 1711 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
29 | nfcv 2336 | . . . . . 6 ⊢ Ⅎ𝑘 # | |
30 | nfcv 2336 | . . . . . 6 ⊢ Ⅎ𝑘0 | |
31 | 4, 29, 30 | nfbr 4075 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 # 0 |
32 | 14, 31 | nfim 1583 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 # 0) |
33 | 7 | breq1d 4039 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 # 0 ↔ ⦋𝑗 / 𝑘⦌𝐶 # 0)) |
34 | 18, 33 | imbi12d 234 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 # 0))) |
35 | fproddivf.ap0 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) | |
36 | 32, 34, 35 | chvarfv 1711 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐶 # 0) |
37 | 11, 22, 28, 36 | fproddivap 11773 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 / ⦋𝑗 / 𝑘⦌𝐶) = (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 / ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶)) |
38 | nfcv 2336 | . . . . . 6 ⊢ Ⅎ𝑗𝐵 | |
39 | 38, 2, 6 | cbvprodi 11703 | . . . . 5 ⊢ ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
40 | 39 | eqcomi 2197 | . . . 4 ⊢ ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 = ∏𝑘 ∈ 𝐴 𝐵 |
41 | 40 | a1i 9 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 = ∏𝑘 ∈ 𝐴 𝐵) |
42 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑗𝐶 | |
43 | 7 | equcoms 1719 | . . . . . 6 ⊢ (𝑗 = 𝑘 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) |
44 | 43 | eqcomd 2199 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐶 = 𝐶) |
45 | 4, 42, 44 | cbvprodi 11703 | . . . 4 ⊢ ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = ∏𝑘 ∈ 𝐴 𝐶 |
46 | 45 | a1i 9 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = ∏𝑘 ∈ 𝐴 𝐶) |
47 | 41, 46 | oveq12d 5936 | . 2 ⊢ (𝜑 → (∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 / ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
48 | 10, 37, 47 | 3eqtrd 2230 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2164 ⦋csb 3080 class class class wbr 4029 (class class class)co 5918 Fincfn 6794 ℂcc 7870 0cc0 7872 # cap 8600 / cdiv 8691 ∏cprod 11693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-proddc 11694 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |