| Step | Hyp | Ref
| Expression |
| 1 | | sbcex 2998 |
. . 3
⊢
([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V) |
| 2 | 1 | a1i 9 |
. 2
⊢
(Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V)) |
| 3 | | nfnfc1 2342 |
. . 3
⊢
Ⅎ𝑦Ⅎ𝑦𝐴 |
| 4 | | id 19 |
. . . 4
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦𝐴) |
| 5 | | nfcvd 2340 |
. . . 4
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦V) |
| 6 | 4, 5 | nfeld 2355 |
. . 3
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦 𝐴 ∈ V) |
| 7 | | sbcex 2998 |
. . . 4
⊢
([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| 8 | 7 | 2a1i 27 |
. . 3
⊢
(Ⅎ𝑦𝐴 → (𝑦 ∈ 𝐵 → ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V))) |
| 9 | 3, 6, 8 | rexlimd2 2612 |
. 2
⊢
(Ⅎ𝑦𝐴 → (∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑 → 𝐴 ∈ V)) |
| 10 | | sbcco 3011 |
. . . 4
⊢
([𝐴 / 𝑧][𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑) |
| 11 | | simpl 109 |
. . . . 5
⊢ ((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) → 𝐴 ∈ V) |
| 12 | | sbsbc 2993 |
. . . . . . 7
⊢ ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ [𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑) |
| 13 | | nfcv 2339 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐵 |
| 14 | | nfs1v 1958 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 15 | 13, 14 | nfrexw 2536 |
. . . . . . . 8
⊢
Ⅎ𝑥∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 |
| 16 | | sbequ12 1785 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 17 | 16 | rexbidv 2498 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
| 18 | 15, 17 | sbie 1805 |
. . . . . . 7
⊢ ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
| 19 | 12, 18 | bitr3i 186 |
. . . . . 6
⊢
([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
| 20 | | nfcvd 2340 |
. . . . . . . . . 10
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦𝑧) |
| 21 | 20, 4 | nfeqd 2354 |
. . . . . . . . 9
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴) |
| 22 | 3, 21 | nfan1 1578 |
. . . . . . . 8
⊢
Ⅎ𝑦(Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) |
| 23 | | dfsbcq2 2992 |
. . . . . . . . 9
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 24 | 23 | adantl 277 |
. . . . . . . 8
⊢
((Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 25 | 22, 24 | rexbid 2496 |
. . . . . . 7
⊢
((Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) → (∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 26 | 25 | adantll 476 |
. . . . . 6
⊢ (((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) ∧ 𝑧 = 𝐴) → (∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 27 | 19, 26 | bitrid 192 |
. . . . 5
⊢ (((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 28 | 11, 27 | sbcied 3026 |
. . . 4
⊢ ((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 29 | 10, 28 | bitr3id 194 |
. . 3
⊢ ((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 30 | 29 | expcom 116 |
. 2
⊢
(Ⅎ𝑦𝐴 → (𝐴 ∈ V → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑))) |
| 31 | 2, 9, 30 | pm5.21ndd 706 |
1
⊢
(Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |