Step | Hyp | Ref
| Expression |
1 | | sbcex 2959 |
. . 3
⊢
([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V) |
2 | 1 | a1i 9 |
. 2
⊢
(Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V)) |
3 | | nfnfc1 2311 |
. . 3
⊢
Ⅎ𝑦Ⅎ𝑦𝐴 |
4 | | id 19 |
. . . 4
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦𝐴) |
5 | | nfcvd 2309 |
. . . 4
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦V) |
6 | 4, 5 | nfeld 2324 |
. . 3
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦 𝐴 ∈ V) |
7 | | sbcex 2959 |
. . . 4
⊢
([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
8 | 7 | 2a1i 27 |
. . 3
⊢
(Ⅎ𝑦𝐴 → (𝑦 ∈ 𝐵 → ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V))) |
9 | 3, 6, 8 | rexlimd2 2581 |
. 2
⊢
(Ⅎ𝑦𝐴 → (∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑 → 𝐴 ∈ V)) |
10 | | sbcco 2972 |
. . . 4
⊢
([𝐴 / 𝑧][𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑) |
11 | | simpl 108 |
. . . . 5
⊢ ((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) → 𝐴 ∈ V) |
12 | | sbsbc 2955 |
. . . . . . 7
⊢ ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ [𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑) |
13 | | nfcv 2308 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐵 |
14 | | nfs1v 1927 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
15 | 13, 14 | nfrexxy 2505 |
. . . . . . . 8
⊢
Ⅎ𝑥∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 |
16 | | sbequ12 1759 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
17 | 16 | rexbidv 2467 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
18 | 15, 17 | sbie 1779 |
. . . . . . 7
⊢ ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
19 | 12, 18 | bitr3i 185 |
. . . . . 6
⊢
([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
20 | | nfcvd 2309 |
. . . . . . . . . 10
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦𝑧) |
21 | 20, 4 | nfeqd 2323 |
. . . . . . . . 9
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴) |
22 | 3, 21 | nfan1 1552 |
. . . . . . . 8
⊢
Ⅎ𝑦(Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) |
23 | | dfsbcq2 2954 |
. . . . . . . . 9
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
24 | 23 | adantl 275 |
. . . . . . . 8
⊢
((Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
25 | 22, 24 | rexbid 2465 |
. . . . . . 7
⊢
((Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) → (∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
26 | 25 | adantll 468 |
. . . . . 6
⊢ (((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) ∧ 𝑧 = 𝐴) → (∃𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
27 | 19, 26 | syl5bb 191 |
. . . . 5
⊢ (((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
28 | 11, 27 | sbcied 2987 |
. . . 4
⊢ ((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
29 | 10, 28 | bitr3id 193 |
. . 3
⊢ ((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
30 | 29 | expcom 115 |
. 2
⊢
(Ⅎ𝑦𝐴 → (𝐴 ∈ V → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑))) |
31 | 2, 9, 30 | pm5.21ndd 695 |
1
⊢
(Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |