ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcrext GIF version

Theorem sbcrext 3038
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcrext (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem sbcrext
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 2969 . . 3 ([𝐴 / 𝑥]𝑦𝐵 𝜑𝐴 ∈ V)
21a1i 9 . 2 (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑𝐴 ∈ V))
3 nfnfc1 2320 . . 3 𝑦𝑦𝐴
4 id 19 . . . 4 (𝑦𝐴𝑦𝐴)
5 nfcvd 2318 . . . 4 (𝑦𝐴𝑦V)
64, 5nfeld 2333 . . 3 (𝑦𝐴 → Ⅎ𝑦 𝐴 ∈ V)
7 sbcex 2969 . . . 4 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
872a1i 27 . . 3 (𝑦𝐴 → (𝑦𝐵 → ([𝐴 / 𝑥]𝜑𝐴 ∈ V)))
93, 6, 8rexlimd2 2590 . 2 (𝑦𝐴 → (∃𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V))
10 sbcco 2982 . . . 4 ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑)
11 simpl 109 . . . . 5 ((𝐴 ∈ V ∧ 𝑦𝐴) → 𝐴 ∈ V)
12 sbsbc 2964 . . . . . . 7 ([𝑧 / 𝑥]∃𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑)
13 nfcv 2317 . . . . . . . . 9 𝑥𝐵
14 nfs1v 1937 . . . . . . . . 9 𝑥[𝑧 / 𝑥]𝜑
1513, 14nfrexxy 2514 . . . . . . . 8 𝑥𝑦𝐵 [𝑧 / 𝑥]𝜑
16 sbequ12 1769 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
1716rexbidv 2476 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑))
1815, 17sbie 1789 . . . . . . 7 ([𝑧 / 𝑥]∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
1912, 18bitr3i 186 . . . . . 6 ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
20 nfcvd 2318 . . . . . . . . . 10 (𝑦𝐴𝑦𝑧)
2120, 4nfeqd 2332 . . . . . . . . 9 (𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴)
223, 21nfan1 1562 . . . . . . . 8 𝑦(𝑦𝐴𝑧 = 𝐴)
23 dfsbcq2 2963 . . . . . . . . 9 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2423adantl 277 . . . . . . . 8 ((𝑦𝐴𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2522, 24rexbid 2474 . . . . . . 7 ((𝑦𝐴𝑧 = 𝐴) → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2625adantll 476 . . . . . 6 (((𝐴 ∈ V ∧ 𝑦𝐴) ∧ 𝑧 = 𝐴) → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2719, 26bitrid 192 . . . . 5 (((𝐴 ∈ V ∧ 𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2811, 27sbcied 2997 . . . 4 ((𝐴 ∈ V ∧ 𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2910, 28bitr3id 194 . . 3 ((𝐴 ∈ V ∧ 𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
3029expcom 116 . 2 (𝑦𝐴 → (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)))
312, 9, 30pm5.21ndd 705 1 (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  [wsb 1760  wcel 2146  wnfc 2304  wrex 2454  Vcvv 2735  [wsbc 2960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961
This theorem is referenced by:  sbcrex  3040
  Copyright terms: Public domain W3C validator