ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcrext GIF version

Theorem sbcrext 3032
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcrext (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem sbcrext
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 2963 . . 3 ([𝐴 / 𝑥]𝑦𝐵 𝜑𝐴 ∈ V)
21a1i 9 . 2 (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑𝐴 ∈ V))
3 nfnfc1 2315 . . 3 𝑦𝑦𝐴
4 id 19 . . . 4 (𝑦𝐴𝑦𝐴)
5 nfcvd 2313 . . . 4 (𝑦𝐴𝑦V)
64, 5nfeld 2328 . . 3 (𝑦𝐴 → Ⅎ𝑦 𝐴 ∈ V)
7 sbcex 2963 . . . 4 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
872a1i 27 . . 3 (𝑦𝐴 → (𝑦𝐵 → ([𝐴 / 𝑥]𝜑𝐴 ∈ V)))
93, 6, 8rexlimd2 2585 . 2 (𝑦𝐴 → (∃𝑦𝐵 [𝐴 / 𝑥]𝜑𝐴 ∈ V))
10 sbcco 2976 . . . 4 ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑)
11 simpl 108 . . . . 5 ((𝐴 ∈ V ∧ 𝑦𝐴) → 𝐴 ∈ V)
12 sbsbc 2959 . . . . . . 7 ([𝑧 / 𝑥]∃𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑)
13 nfcv 2312 . . . . . . . . 9 𝑥𝐵
14 nfs1v 1932 . . . . . . . . 9 𝑥[𝑧 / 𝑥]𝜑
1513, 14nfrexxy 2509 . . . . . . . 8 𝑥𝑦𝐵 [𝑧 / 𝑥]𝜑
16 sbequ12 1764 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
1716rexbidv 2471 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑))
1815, 17sbie 1784 . . . . . . 7 ([𝑧 / 𝑥]∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
1912, 18bitr3i 185 . . . . . 6 ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
20 nfcvd 2313 . . . . . . . . . 10 (𝑦𝐴𝑦𝑧)
2120, 4nfeqd 2327 . . . . . . . . 9 (𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴)
223, 21nfan1 1557 . . . . . . . 8 𝑦(𝑦𝐴𝑧 = 𝐴)
23 dfsbcq2 2958 . . . . . . . . 9 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2423adantl 275 . . . . . . . 8 ((𝑦𝐴𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2522, 24rexbid 2469 . . . . . . 7 ((𝑦𝐴𝑧 = 𝐴) → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2625adantll 473 . . . . . 6 (((𝐴 ∈ V ∧ 𝑦𝐴) ∧ 𝑧 = 𝐴) → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2719, 26syl5bb 191 . . . . 5 (((𝐴 ∈ V ∧ 𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2811, 27sbcied 2991 . . . 4 ((𝐴 ∈ V ∧ 𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
2910, 28bitr3id 193 . . 3 ((𝐴 ∈ V ∧ 𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
3029expcom 115 . 2 (𝑦𝐴 → (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)))
312, 9, 30pm5.21ndd 700 1 (𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  [wsb 1755  wcel 2141  wnfc 2299  wrex 2449  Vcvv 2730  [wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956
This theorem is referenced by:  sbcrex  3034
  Copyright terms: Public domain W3C validator