| Step | Hyp | Ref
| Expression |
| 1 | | sbcco 3011 |
. 2
⊢
([𝐴 / 𝑧][𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑) |
| 2 | | simpl 109 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → 𝐴 ∈ 𝑉) |
| 3 | | sbsbc 2993 |
. . . . 5
⊢ ([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ [𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑) |
| 4 | | nfcv 2339 |
. . . . . . 7
⊢
Ⅎ𝑥𝐵 |
| 5 | | nfs1v 1958 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 6 | 4, 5 | nfralxy 2535 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 |
| 7 | | sbequ12 1785 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 8 | 7 | ralbidv 2497 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
| 9 | 6, 8 | sbie 1805 |
. . . . 5
⊢ ([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
| 10 | 3, 9 | bitr3i 186 |
. . . 4
⊢
([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
| 11 | | nfnfc1 2342 |
. . . . . . 7
⊢
Ⅎ𝑦Ⅎ𝑦𝐴 |
| 12 | | nfcvd 2340 |
. . . . . . . 8
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦𝑧) |
| 13 | | id 19 |
. . . . . . . 8
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦𝐴) |
| 14 | 12, 13 | nfeqd 2354 |
. . . . . . 7
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴) |
| 15 | 11, 14 | nfan1 1578 |
. . . . . 6
⊢
Ⅎ𝑦(Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) |
| 16 | | dfsbcq2 2992 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 17 | 16 | adantl 277 |
. . . . . 6
⊢
((Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 18 | 15, 17 | ralbid 2495 |
. . . . 5
⊢
((Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) → (∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 19 | 18 | adantll 476 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) ∧ 𝑧 = 𝐴) → (∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 20 | 10, 19 | bitrid 192 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 21 | 2, 20 | sbcied 3026 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 22 | 1, 21 | bitr3id 194 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |