ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcralt GIF version

Theorem sbcralt 3039
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
Assertion
Ref Expression
sbcralt ((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcralt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcco 2984 . 2 ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑)
2 simpl 109 . . 3 ((𝐴𝑉𝑦𝐴) → 𝐴𝑉)
3 sbsbc 2966 . . . . 5 ([𝑧 / 𝑥]∀𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑)
4 nfcv 2319 . . . . . . 7 𝑥𝐵
5 nfs1v 1939 . . . . . . 7 𝑥[𝑧 / 𝑥]𝜑
64, 5nfralxy 2515 . . . . . 6 𝑥𝑦𝐵 [𝑧 / 𝑥]𝜑
7 sbequ12 1771 . . . . . . 7 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
87ralbidv 2477 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑))
96, 8sbie 1791 . . . . 5 ([𝑧 / 𝑥]∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑)
103, 9bitr3i 186 . . . 4 ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑧 / 𝑥]𝜑)
11 nfnfc1 2322 . . . . . . 7 𝑦𝑦𝐴
12 nfcvd 2320 . . . . . . . 8 (𝑦𝐴𝑦𝑧)
13 id 19 . . . . . . . 8 (𝑦𝐴𝑦𝐴)
1412, 13nfeqd 2334 . . . . . . 7 (𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴)
1511, 14nfan1 1564 . . . . . 6 𝑦(𝑦𝐴𝑧 = 𝐴)
16 dfsbcq2 2965 . . . . . . 7 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
1716adantl 277 . . . . . 6 ((𝑦𝐴𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
1815, 17ralbid 2475 . . . . 5 ((𝑦𝐴𝑧 = 𝐴) → (∀𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
1918adantll 476 . . . 4 (((𝐴𝑉𝑦𝐴) ∧ 𝑧 = 𝐴) → (∀𝑦𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
2010, 19bitrid 192 . . 3 (((𝐴𝑉𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
212, 20sbcied 2999 . 2 ((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
221, 21bitr3id 194 1 ((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  [wsb 1762  wcel 2148  wnfc 2306  wral 2455  [wsbc 2962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2739  df-sbc 2963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator