| Step | Hyp | Ref
 | Expression | 
| 1 |   | sbcco 3011 | 
. 2
⊢
([𝐴 / 𝑧][𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑) | 
| 2 |   | simpl 109 | 
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → 𝐴 ∈ 𝑉) | 
| 3 |   | sbsbc 2993 | 
. . . . 5
⊢ ([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ [𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑) | 
| 4 |   | nfcv 2339 | 
. . . . . . 7
⊢
Ⅎ𝑥𝐵 | 
| 5 |   | nfs1v 1958 | 
. . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 | 
| 6 | 4, 5 | nfralxy 2535 | 
. . . . . 6
⊢
Ⅎ𝑥∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 | 
| 7 |   | sbequ12 1785 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | 
| 8 | 7 | ralbidv 2497 | 
. . . . . 6
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) | 
| 9 | 6, 8 | sbie 1805 | 
. . . . 5
⊢ ([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) | 
| 10 | 3, 9 | bitr3i 186 | 
. . . 4
⊢
([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) | 
| 11 |   | nfnfc1 2342 | 
. . . . . . 7
⊢
Ⅎ𝑦Ⅎ𝑦𝐴 | 
| 12 |   | nfcvd 2340 | 
. . . . . . . 8
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦𝑧) | 
| 13 |   | id 19 | 
. . . . . . . 8
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦𝐴) | 
| 14 | 12, 13 | nfeqd 2354 | 
. . . . . . 7
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦 𝑧 = 𝐴) | 
| 15 | 11, 14 | nfan1 1578 | 
. . . . . 6
⊢
Ⅎ𝑦(Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) | 
| 16 |   | dfsbcq2 2992 | 
. . . . . . 7
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | 
| 17 | 16 | adantl 277 | 
. . . . . 6
⊢
((Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | 
| 18 | 15, 17 | ralbid 2495 | 
. . . . 5
⊢
((Ⅎ𝑦𝐴 ∧ 𝑧 = 𝐴) → (∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | 
| 19 | 18 | adantll 476 | 
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) ∧ 𝑧 = 𝐴) → (∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | 
| 20 | 10, 19 | bitrid 192 | 
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) ∧ 𝑧 = 𝐴) → ([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | 
| 21 | 2, 20 | sbcied 3026 | 
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑧][𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | 
| 22 | 1, 21 | bitr3id 194 | 
1
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |