Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfi | GIF version |
Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfi.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
nfi | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1454 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nfi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpgbir 1446 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nfth 1457 nfnth 1458 nfe1 1489 nfdh 1517 nfv 1521 nfa1 1534 nfan1 1557 nfim1 1564 nfor 1567 nfex 1630 nfae 1712 cbv3h 1736 nfs1 1802 nfs1v 1932 hbsb 1942 sbco2h 1957 hbsbd 1975 dvelimALT 2003 dvelimfv 2004 hbeu 2040 hbeud 2041 eu3h 2064 mo3h 2072 nfsab1 2160 nfsab 2162 nfcii 2303 nfcri 2306 |
Copyright terms: Public domain | W3C validator |