Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfi | GIF version |
Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfi.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
nfi | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1449 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nfi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpgbir 1441 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nfth 1452 nfnth 1453 nfe1 1484 nfdh 1512 nfv 1516 nfa1 1529 nfan1 1552 nfim1 1559 nfor 1562 nfex 1625 nfae 1707 cbv3h 1731 nfs1 1797 nfs1v 1927 hbsb 1937 sbco2h 1952 hbsbd 1970 dvelimALT 1998 dvelimfv 1999 hbeu 2035 hbeud 2036 eu3h 2059 mo3h 2067 nfsab1 2155 nfsab 2157 nfcii 2299 nfcri 2302 |
Copyright terms: Public domain | W3C validator |