![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfi | GIF version |
Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfi.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
nfi | ⊢ Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1395 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nfi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpgbir 1387 | 1 ⊢ Ⅎ𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1287 Ⅎwnf 1394 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1383 |
This theorem depends on definitions: df-bi 115 df-nf 1395 |
This theorem is referenced by: nfth 1398 nfnth 1399 nfe1 1430 nfdh 1462 nfv 1466 nfa1 1479 nfan1 1501 nfim1 1508 nfor 1511 nfal 1513 nfex 1573 nfae 1654 cbv3h 1678 nfs1 1737 nfs1v 1863 hbsb 1871 sbco2h 1886 hbsbd 1906 dvelimALT 1934 dvelimfv 1935 hbeu 1969 hbeud 1970 eu3h 1993 mo3h 2001 nfsab1 2078 nfsab 2080 nfcii 2219 nfcri 2222 |
Copyright terms: Public domain | W3C validator |