| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfi | GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfi.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| nfi | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1485 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | nfi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | mpgbir 1477 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nfth 1488 nfnth 1489 nfe1 1520 nfdh 1548 nfv 1552 nfa1 1565 nfan1 1588 nfim1 1595 nfor 1598 nfex 1661 nfae 1743 cbv3h 1767 nfs1 1833 nfs1v 1968 hbsb 1978 sbco2h 1993 hbsbd 2011 dvelimALT 2039 dvelimfv 2040 hbeu 2076 hbeud 2077 eu3h 2101 mo3h 2109 nfsab1 2197 nfsab 2199 nfcii 2341 nfcri 2344 |
| Copyright terms: Public domain | W3C validator |