ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfi GIF version

Theorem nfi 1485
Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfi.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
nfi 𝑥𝜑

Proof of Theorem nfi
StepHypRef Expression
1 df-nf 1484 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfi.1 . 2 (𝜑 → ∀𝑥𝜑)
31, 2mpgbir 1476 1 𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1472
This theorem depends on definitions:  df-bi 117  df-nf 1484
This theorem is referenced by:  nfth  1487  nfnth  1488  nfe1  1519  nfdh  1547  nfv  1551  nfa1  1564  nfan1  1587  nfim1  1594  nfor  1597  nfex  1660  nfae  1742  cbv3h  1766  nfs1  1832  nfs1v  1967  hbsb  1977  sbco2h  1992  hbsbd  2010  dvelimALT  2038  dvelimfv  2039  hbeu  2075  hbeud  2076  eu3h  2099  mo3h  2107  nfsab1  2195  nfsab  2197  nfcii  2339  nfcri  2342
  Copyright terms: Public domain W3C validator