| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfi | GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfi.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| nfi | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1484 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | nfi.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | mpgbir 1476 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: nfth 1487 nfnth 1488 nfe1 1519 nfdh 1547 nfv 1551 nfa1 1564 nfan1 1587 nfim1 1594 nfor 1597 nfex 1660 nfae 1742 cbv3h 1766 nfs1 1832 nfs1v 1967 hbsb 1977 sbco2h 1992 hbsbd 2010 dvelimALT 2038 dvelimfv 2039 hbeu 2075 hbeud 2076 eu3h 2099 mo3h 2107 nfsab1 2195 nfsab 2197 nfcii 2339 nfcri 2342 |
| Copyright terms: Public domain | W3C validator |