ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcjust GIF version

Theorem nfcjust 2307
Description: Justification theorem for df-nfc 2308. (Contributed by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
nfcjust (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfcjust
StepHypRef Expression
1 nfv 1528 . . 3 𝑥 𝑦 = 𝑧
2 eleq1 2240 . . 3 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
31, 2nfbidf 1539 . 2 (𝑦 = 𝑧 → (Ⅎ𝑥 𝑦𝐴 ↔ Ⅎ𝑥 𝑧𝐴))
43cbvalv 1917 1 (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1351  wnf 1460  wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-cleq 2170  df-clel 2173
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator