Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcjust | GIF version |
Description: Justification theorem for df-nfc 2297. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfcjust | ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝑧 | |
2 | eleq1 2229 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
3 | 1, 2 | nfbidf 1527 | . 2 ⊢ (𝑦 = 𝑧 → (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑧 ∈ 𝐴)) |
4 | 3 | cbvalv 1905 | 1 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |