| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riota2df | GIF version | ||
| Description: A deduction version of riota2f 5923. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| riota2df.1 | ⊢ Ⅎ𝑥𝜑 |
| riota2df.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| riota2df.3 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| riota2df.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| riota2df.5 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riota2df | ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota2df.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → 𝐵 ∈ 𝐴) |
| 3 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → ∃!𝑥 ∈ 𝐴 𝜓) | |
| 4 | df-reu 2491 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | 3, 4 | sylib 122 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 6 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
| 7 | 2 | adantr 276 | . . . . . 6 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝐵 ∈ 𝐴) |
| 8 | 6, 7 | eqeltrd 2282 | . . . . 5 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 ∈ 𝐴) |
| 9 | 8 | biantrurd 305 | . . . 4 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 10 | riota2df.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 11 | 10 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
| 12 | 9, 11 | bitr3d 190 | . . 3 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ 𝜒)) |
| 13 | riota2df.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 14 | nfreu1 2678 | . . . 4 ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜓 | |
| 15 | 13, 14 | nfan 1588 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) |
| 16 | riota2df.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 17 | 16 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → Ⅎ𝑥𝜒) |
| 18 | riota2df.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 19 | 18 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → Ⅎ𝑥𝐵) |
| 20 | 2, 5, 12, 15, 17, 19 | iota2df 5258 | . 2 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = 𝐵)) |
| 21 | df-riota 5901 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 22 | 21 | eqeq1i 2213 | . 2 ⊢ ((℩𝑥 ∈ 𝐴 𝜓) = 𝐵 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = 𝐵) |
| 23 | 20, 22 | bitr4di 198 | 1 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 Ⅎwnf 1483 ∃!weu 2054 ∈ wcel 2176 Ⅎwnfc 2335 ∃!wreu 2486 ℩cio 5231 ℩crio 5900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-reu 2491 df-v 2774 df-sbc 2999 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 df-iota 5233 df-riota 5901 |
| This theorem is referenced by: riota2f 5923 riota5f 5926 |
| Copyright terms: Public domain | W3C validator |