ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota2df GIF version

Theorem riota2df 5853
Description: A deduction version of riota2f 5854. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota2df.1 𝑥𝜑
riota2df.2 (𝜑𝑥𝐵)
riota2df.3 (𝜑 → Ⅎ𝑥𝜒)
riota2df.4 (𝜑𝐵𝐴)
riota2df.5 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
Assertion
Ref Expression
riota2df ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (𝑥𝐴 𝜓) = 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)   𝐵(𝑥)

Proof of Theorem riota2df
StepHypRef Expression
1 riota2df.4 . . . 4 (𝜑𝐵𝐴)
21adantr 276 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → 𝐵𝐴)
3 simpr 110 . . . 4 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → ∃!𝑥𝐴 𝜓)
4 df-reu 2462 . . . 4 (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥(𝑥𝐴𝜓))
53, 4sylib 122 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → ∃!𝑥(𝑥𝐴𝜓))
6 simpr 110 . . . . . 6 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
72adantr 276 . . . . . 6 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝐵𝐴)
86, 7eqeltrd 2254 . . . . 5 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥𝐴)
98biantrurd 305 . . . 4 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ (𝑥𝐴𝜓)))
10 riota2df.5 . . . . 5 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
1110adantlr 477 . . . 4 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓𝜒))
129, 11bitr3d 190 . . 3 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → ((𝑥𝐴𝜓) ↔ 𝜒))
13 riota2df.1 . . . 4 𝑥𝜑
14 nfreu1 2649 . . . 4 𝑥∃!𝑥𝐴 𝜓
1513, 14nfan 1565 . . 3 𝑥(𝜑 ∧ ∃!𝑥𝐴 𝜓)
16 riota2df.3 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
1716adantr 276 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → Ⅎ𝑥𝜒)
18 riota2df.2 . . . 4 (𝜑𝑥𝐵)
1918adantr 276 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → 𝑥𝐵)
202, 5, 12, 15, 17, 19iota2df 5204 . 2 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (℩𝑥(𝑥𝐴𝜓)) = 𝐵))
21 df-riota 5833 . . 3 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
2221eqeq1i 2185 . 2 ((𝑥𝐴 𝜓) = 𝐵 ↔ (℩𝑥(𝑥𝐴𝜓)) = 𝐵)
2320, 22bitr4di 198 1 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (𝑥𝐴 𝜓) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wnf 1460  ∃!weu 2026  wcel 2148  wnfc 2306  ∃!wreu 2457  cio 5178  crio 5832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-reu 2462  df-v 2741  df-sbc 2965  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812  df-iota 5180  df-riota 5833
This theorem is referenced by:  riota2f  5854  riota5f  5857
  Copyright terms: Public domain W3C validator