ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu1 GIF version

Theorem nfeu1 2066
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1 𝑥∃!𝑥𝜑

Proof of Theorem nfeu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2058 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 nfa1 1565 . . 3 𝑥𝑥(𝜑𝑥 = 𝑦)
32nfex 1661 . 2 𝑥𝑦𝑥(𝜑𝑥 = 𝑦)
41, 3nfxfr 1498 1 𝑥∃!𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1371  wnf 1484  wex 1516  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-eu 2058
This theorem is referenced by:  nfmo1  2067  moaneu  2131  nfreu1  2679  eusv2i  4510  eusv2nf  4511  iota2  5270  sniota  5271  fv3  5612  tz6.12c  5619  eusvobj1  5944
  Copyright terms: Public domain W3C validator