| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeu1 | GIF version | ||
| Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2056 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | nfa1 1563 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | nfex 1659 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 4 | 1, 3 | nfxfr 1496 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1370 Ⅎwnf 1482 ∃wex 1514 ∃!weu 2053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-eu 2056 |
| This theorem is referenced by: nfmo1 2065 moaneu 2129 nfreu1 2677 eusv2i 4501 eusv2nf 4502 iota2 5260 sniota 5261 fv3 5598 tz6.12c 5605 eusvobj1 5930 |
| Copyright terms: Public domain | W3C validator |