ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu1 GIF version

Theorem nfeu1 2025
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1 𝑥∃!𝑥𝜑

Proof of Theorem nfeu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2017 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 nfa1 1529 . . 3 𝑥𝑥(𝜑𝑥 = 𝑦)
32nfex 1625 . 2 𝑥𝑦𝑥(𝜑𝑥 = 𝑦)
41, 3nfxfr 1462 1 𝑥∃!𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341  wnf 1448  wex 1480  ∃!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-eu 2017
This theorem is referenced by:  nfmo1  2026  moaneu  2090  nfreu1  2637  eusv2i  4433  eusv2nf  4434  iota2  5179  sniota  5180  fv3  5509  tz6.12c  5516  eusvobj1  5829
  Copyright terms: Public domain W3C validator