ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu1 GIF version

Theorem nfeu1 2088
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1 𝑥∃!𝑥𝜑

Proof of Theorem nfeu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2080 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 nfa1 1587 . . 3 𝑥𝑥(𝜑𝑥 = 𝑦)
32nfex 1683 . 2 𝑥𝑦𝑥(𝜑𝑥 = 𝑦)
41, 3nfxfr 1520 1 𝑥∃!𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1393  wnf 1506  wex 1538  ∃!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-eu 2080
This theorem is referenced by:  nfmo1  2089  moaneu  2154  nfreu1  2703  eusv2i  4545  eusv2nf  4546  iota2  5307  sniota  5308  fv3  5649  tz6.12c  5656  eusvobj1  5987
  Copyright terms: Public domain W3C validator