| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfeu1 | GIF version | ||
| Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-eu 2048 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | nfa1 1555 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | nfex 1651 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | 
| 4 | 1, 3 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 ∃!weu 2045 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-eu 2048 | 
| This theorem is referenced by: nfmo1 2057 moaneu 2121 nfreu1 2669 eusv2i 4490 eusv2nf 4491 iota2 5248 sniota 5249 fv3 5581 tz6.12c 5588 eusvobj1 5909 | 
| Copyright terms: Public domain | W3C validator |