ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeu1 GIF version

Theorem nfeu1 2056
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1 𝑥∃!𝑥𝜑

Proof of Theorem nfeu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2048 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 nfa1 1555 . . 3 𝑥𝑥(𝜑𝑥 = 𝑦)
32nfex 1651 . 2 𝑥𝑦𝑥(𝜑𝑥 = 𝑦)
41, 3nfxfr 1488 1 𝑥∃!𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362  wnf 1474  wex 1506  ∃!weu 2045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-eu 2048
This theorem is referenced by:  nfmo1  2057  moaneu  2121  nfreu1  2669  eusv2i  4490  eusv2nf  4491  iota2  5248  sniota  5249  fv3  5581  tz6.12c  5588  eusvobj1  5909
  Copyright terms: Public domain W3C validator