| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeu1 | GIF version | ||
| Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2080 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | nfa1 1587 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | nfex 1683 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 4 | 1, 3 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 Ⅎwnf 1506 ∃wex 1538 ∃!weu 2077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-eu 2080 |
| This theorem is referenced by: nfmo1 2089 moaneu 2154 nfreu1 2703 eusv2i 4545 eusv2nf 4546 iota2 5307 sniota 5308 fv3 5649 tz6.12c 5656 eusvobj1 5987 |
| Copyright terms: Public domain | W3C validator |