Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeu1 | GIF version |
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2017 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | nfa1 1529 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
3 | 2 | nfex 1625 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
4 | 1, 3 | nfxfr 1462 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 ∃wex 1480 ∃!weu 2014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-eu 2017 |
This theorem is referenced by: nfmo1 2026 moaneu 2090 nfreu1 2637 eusv2i 4433 eusv2nf 4434 iota2 5179 sniota 5180 fv3 5509 tz6.12c 5516 eusvobj1 5829 |
Copyright terms: Public domain | W3C validator |