ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3reeanv GIF version

Theorem 3reeanv 2702
Description: Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
Assertion
Ref Expression
3reeanv (∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓 ∧ ∃𝑧𝐶 𝜒))
Distinct variable groups:   𝜑,𝑦,𝑧   𝜓,𝑥,𝑧   𝜒,𝑥,𝑦   𝑦,𝐴   𝑥,𝐵,𝑧   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑧)   𝐴(𝑥,𝑧)   𝐵(𝑦)   𝐶(𝑧)

Proof of Theorem 3reeanv
StepHypRef Expression
1 r19.41v 2687 . . 3 (∃𝑥𝐴 (∃𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒) ↔ (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒))
2 reeanv 2701 . . . 4 (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))
32anbi1i 458 . . 3 ((∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒) ↔ ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓) ∧ ∃𝑧𝐶 𝜒))
41, 3bitri 184 . 2 (∃𝑥𝐴 (∃𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒) ↔ ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓) ∧ ∃𝑧𝐶 𝜒))
5 df-3an 1004 . . . . 5 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
652rexbii 2539 . . . 4 (∃𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ ∃𝑦𝐵𝑧𝐶 ((𝜑𝜓) ∧ 𝜒))
7 reeanv 2701 . . . 4 (∃𝑦𝐵𝑧𝐶 ((𝜑𝜓) ∧ 𝜒) ↔ (∃𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒))
86, 7bitri 184 . . 3 (∃𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ (∃𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒))
98rexbii 2537 . 2 (∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ ∃𝑥𝐴 (∃𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒))
10 df-3an 1004 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓 ∧ ∃𝑧𝐶 𝜒) ↔ ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓) ∧ ∃𝑧𝐶 𝜒))
114, 9, 103bitr4i 212 1 (∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓 ∧ ∃𝑧𝐶 𝜒))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 1002  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514
This theorem is referenced by:  imasmnd2  13485  imasgrp2  13647  imasrng  13919  imasring  14027
  Copyright terms: Public domain W3C validator