| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3reeanv | GIF version | ||
| Description: Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.) |
| Ref | Expression |
|---|---|
| 3reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑧 ∈ 𝐶 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41v 2653 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ∧ ∃𝑧 ∈ 𝐶 𝜒) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ∧ ∃𝑧 ∈ 𝐶 𝜒)) | |
| 2 | reeanv 2667 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) | |
| 3 | 2 | anbi1i 458 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ∧ ∃𝑧 ∈ 𝐶 𝜒) ↔ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓) ∧ ∃𝑧 ∈ 𝐶 𝜒)) |
| 4 | 1, 3 | bitri 184 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ∧ ∃𝑧 ∈ 𝐶 𝜒) ↔ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓) ∧ ∃𝑧 ∈ 𝐶 𝜒)) |
| 5 | df-3an 982 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 6 | 5 | 2rexbii 2506 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 7 | reeanv 2667 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ∧ ∃𝑧 ∈ 𝐶 𝜒)) | |
| 8 | 6, 7 | bitri 184 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ∧ ∃𝑧 ∈ 𝐶 𝜒)) |
| 9 | 8 | rexbii 2504 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ∧ ∃𝑧 ∈ 𝐶 𝜒)) |
| 10 | df-3an 982 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑧 ∈ 𝐶 𝜒) ↔ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓) ∧ ∃𝑧 ∈ 𝐶 𝜒)) | |
| 11 | 4, 9, 10 | 3bitr4i 212 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑧 ∈ 𝐶 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 |
| This theorem is referenced by: imasmnd2 13154 imasgrp2 13316 imasrng 13588 imasring 13696 |
| Copyright terms: Public domain | W3C validator |