ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mkvprop GIF version

Theorem mkvprop 7224
Description: Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
Assertion
Ref Expression
mkvprop ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem mkvprop
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nfv 1542 . . . . . . 7 𝑛 𝐴 ∈ Markov
2 nfra1 2528 . . . . . . 7 𝑛𝑛𝐴 DECID 𝜑
31, 2nfan 1579 . . . . . 6 𝑛(𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑)
4 simpr 110 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → 𝑛𝐴)
5 0lt2o 6499 . . . . . . . . . . . 12 ∅ ∈ 2o
65a1i 9 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → ∅ ∈ 2o)
7 1lt2o 6500 . . . . . . . . . . . 12 1o ∈ 2o
87a1i 9 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → 1o ∈ 2o)
9 rsp 2544 . . . . . . . . . . . 12 (∀𝑛𝐴 DECID 𝜑 → (𝑛𝐴DECID 𝜑))
109imp 124 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → DECID 𝜑)
116, 8, 10ifcldcd 3597 . . . . . . . . . 10 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
1211adantll 476 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
13 eqid 2196 . . . . . . . . . 10 (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) = (𝑛𝐴 ↦ if(𝜑, ∅, 1o))
1413fvmpt2 5645 . . . . . . . . 9 ((𝑛𝐴 ∧ if(𝜑, ∅, 1o) ∈ 2o) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
154, 12, 14syl2anc 411 . . . . . . . 8 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
1615eqeq1d 2205 . . . . . . 7 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o ↔ if(𝜑, ∅, 1o) = 1o))
17 1n0 6490 . . . . . . . . . 10 1o ≠ ∅
1817nesymi 2413 . . . . . . . . 9 ¬ ∅ = 1o
19 iftrue 3566 . . . . . . . . . 10 (𝜑 → if(𝜑, ∅, 1o) = ∅)
2019eqeq1d 2205 . . . . . . . . 9 (𝜑 → (if(𝜑, ∅, 1o) = 1o ↔ ∅ = 1o))
2118, 20mtbiri 676 . . . . . . . 8 (𝜑 → ¬ if(𝜑, ∅, 1o) = 1o)
2221con2i 628 . . . . . . 7 (if(𝜑, ∅, 1o) = 1o → ¬ 𝜑)
2316, 22biimtrdi 163 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ¬ 𝜑))
243, 23ralimdaa 2563 . . . . 5 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) → (∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∀𝑛𝐴 ¬ 𝜑))
2524con3d 632 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) → (¬ ∀𝑛𝐴 ¬ 𝜑 → ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
26253impia 1202 . . 3 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o)
27 mptexg 5787 . . . . 5 (𝐴 ∈ Markov → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V)
28273ad2ant1 1020 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V)
29 ismkv 7219 . . . . . 6 (𝐴 ∈ Markov → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅))))
3029ibi 176 . . . . 5 (𝐴 ∈ Markov → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)))
31303ad2ant1 1020 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)))
32 nfra1 2528 . . . . . . 7 𝑛𝑛𝐴 ¬ 𝜑
3332nfn 1672 . . . . . 6 𝑛 ¬ ∀𝑛𝐴 ¬ 𝜑
341, 2, 33nf3an 1580 . . . . 5 𝑛(𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑)
35113ad2antl2 1162 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
3634, 35, 13fmptdf 5719 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o)
37 feq1 5390 . . . . . 6 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓:𝐴⟶2o ↔ (𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o))
38 nfmpt1 4126 . . . . . . . . . 10 𝑛(𝑛𝐴 ↦ if(𝜑, ∅, 1o))
3938nfeq2 2351 . . . . . . . . 9 𝑛 𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o))
40 fveq1 5557 . . . . . . . . . 10 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓𝑛) = ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛))
4140eqeq1d 2205 . . . . . . . . 9 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓𝑛) = 1o ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4239, 41ralbid 2495 . . . . . . . 8 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (∀𝑛𝐴 (𝑓𝑛) = 1o ↔ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4342notbid 668 . . . . . . 7 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o ↔ ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4440eqeq1d 2205 . . . . . . . 8 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓𝑛) = ∅ ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
4539, 44rexbid 2496 . . . . . . 7 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (∃𝑛𝐴 (𝑓𝑛) = ∅ ↔ ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
4643, 45imbi12d 234 . . . . . 6 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅) ↔ (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)))
4737, 46imbi12d 234 . . . . 5 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)) ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))))
4847spcgv 2851 . . . 4 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V → (∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))))
4928, 31, 36, 48syl3c 63 . . 3 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
5026, 49mpd 13 . 2 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)
51 simpr 110 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → 𝑛𝐴)
5251, 35, 14syl2anc 411 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
5352eqeq1d 2205 . . . 4 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ if(𝜑, ∅, 1o) = ∅))
5493ad2ant2 1021 . . . . . . 7 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴DECID 𝜑))
5554imp 124 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → DECID 𝜑)
5617neii 2369 . . . . . . . . 9 ¬ 1o = ∅
57 simpr 110 . . . . . . . . . . 11 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → ¬ 𝜑)
5857iffalsed 3571 . . . . . . . . . 10 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → if(𝜑, ∅, 1o) = 1o)
5958eqeq1d 2205 . . . . . . . . 9 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → (if(𝜑, ∅, 1o) = ∅ ↔ 1o = ∅))
6056, 59mtbiri 676 . . . . . . . 8 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, ∅, 1o) = ∅)
6160ex 115 . . . . . . 7 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (¬ 𝜑 → ¬ if(𝜑, ∅, 1o) = ∅))
6261con2d 625 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ → ¬ ¬ 𝜑))
63 notnotrdc 844 . . . . . 6 (DECID 𝜑 → (¬ ¬ 𝜑𝜑))
6455, 62, 63sylsyld 58 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ → 𝜑))
6564, 19impbid1 142 . . . 4 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ ↔ 𝜑))
6653, 65bitrd 188 . . 3 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ 𝜑))
6734, 66rexbida 2492 . 2 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ ∃𝑛𝐴 𝜑))
6850, 67mpbid 147 1 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835  w3a 980  wal 1362   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  c0 3450  ifcif 3561  cmpt 4094  wf 5254  cfv 5258  1oc1o 6467  2oc2o 6468  Markovcmarkov 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-2o 6475  df-markov 7218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator