ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mkvprop GIF version

Theorem mkvprop 7281
Description: Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
Assertion
Ref Expression
mkvprop ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem mkvprop
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . . . . . . 7 𝑛 𝐴 ∈ Markov
2 nfra1 2538 . . . . . . 7 𝑛𝑛𝐴 DECID 𝜑
31, 2nfan 1589 . . . . . 6 𝑛(𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑)
4 simpr 110 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → 𝑛𝐴)
5 0lt2o 6545 . . . . . . . . . . . 12 ∅ ∈ 2o
65a1i 9 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → ∅ ∈ 2o)
7 1lt2o 6546 . . . . . . . . . . . 12 1o ∈ 2o
87a1i 9 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → 1o ∈ 2o)
9 rsp 2554 . . . . . . . . . . . 12 (∀𝑛𝐴 DECID 𝜑 → (𝑛𝐴DECID 𝜑))
109imp 124 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → DECID 𝜑)
116, 8, 10ifcldcd 3613 . . . . . . . . . 10 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
1211adantll 476 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
13 eqid 2206 . . . . . . . . . 10 (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) = (𝑛𝐴 ↦ if(𝜑, ∅, 1o))
1413fvmpt2 5681 . . . . . . . . 9 ((𝑛𝐴 ∧ if(𝜑, ∅, 1o) ∈ 2o) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
154, 12, 14syl2anc 411 . . . . . . . 8 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
1615eqeq1d 2215 . . . . . . 7 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o ↔ if(𝜑, ∅, 1o) = 1o))
17 1n0 6536 . . . . . . . . . 10 1o ≠ ∅
1817nesymi 2423 . . . . . . . . 9 ¬ ∅ = 1o
19 iftrue 3580 . . . . . . . . . 10 (𝜑 → if(𝜑, ∅, 1o) = ∅)
2019eqeq1d 2215 . . . . . . . . 9 (𝜑 → (if(𝜑, ∅, 1o) = 1o ↔ ∅ = 1o))
2118, 20mtbiri 677 . . . . . . . 8 (𝜑 → ¬ if(𝜑, ∅, 1o) = 1o)
2221con2i 628 . . . . . . 7 (if(𝜑, ∅, 1o) = 1o → ¬ 𝜑)
2316, 22biimtrdi 163 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ¬ 𝜑))
243, 23ralimdaa 2573 . . . . 5 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) → (∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∀𝑛𝐴 ¬ 𝜑))
2524con3d 632 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) → (¬ ∀𝑛𝐴 ¬ 𝜑 → ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
26253impia 1203 . . 3 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o)
27 mptexg 5827 . . . . 5 (𝐴 ∈ Markov → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V)
28273ad2ant1 1021 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V)
29 ismkv 7276 . . . . . 6 (𝐴 ∈ Markov → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅))))
3029ibi 176 . . . . 5 (𝐴 ∈ Markov → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)))
31303ad2ant1 1021 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)))
32 nfra1 2538 . . . . . . 7 𝑛𝑛𝐴 ¬ 𝜑
3332nfn 1682 . . . . . 6 𝑛 ¬ ∀𝑛𝐴 ¬ 𝜑
341, 2, 33nf3an 1590 . . . . 5 𝑛(𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑)
35113ad2antl2 1163 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
3634, 35, 13fmptdf 5755 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o)
37 feq1 5423 . . . . . 6 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓:𝐴⟶2o ↔ (𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o))
38 nfmpt1 4148 . . . . . . . . . 10 𝑛(𝑛𝐴 ↦ if(𝜑, ∅, 1o))
3938nfeq2 2361 . . . . . . . . 9 𝑛 𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o))
40 fveq1 5593 . . . . . . . . . 10 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓𝑛) = ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛))
4140eqeq1d 2215 . . . . . . . . 9 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓𝑛) = 1o ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4239, 41ralbid 2505 . . . . . . . 8 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (∀𝑛𝐴 (𝑓𝑛) = 1o ↔ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4342notbid 669 . . . . . . 7 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o ↔ ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4440eqeq1d 2215 . . . . . . . 8 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓𝑛) = ∅ ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
4539, 44rexbid 2506 . . . . . . 7 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (∃𝑛𝐴 (𝑓𝑛) = ∅ ↔ ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
4643, 45imbi12d 234 . . . . . 6 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅) ↔ (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)))
4737, 46imbi12d 234 . . . . 5 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)) ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))))
4847spcgv 2864 . . . 4 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V → (∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))))
4928, 31, 36, 48syl3c 63 . . 3 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
5026, 49mpd 13 . 2 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)
51 simpr 110 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → 𝑛𝐴)
5251, 35, 14syl2anc 411 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
5352eqeq1d 2215 . . . 4 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ if(𝜑, ∅, 1o) = ∅))
5493ad2ant2 1022 . . . . . . 7 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴DECID 𝜑))
5554imp 124 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → DECID 𝜑)
5617neii 2379 . . . . . . . . 9 ¬ 1o = ∅
57 simpr 110 . . . . . . . . . . 11 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → ¬ 𝜑)
5857iffalsed 3585 . . . . . . . . . 10 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → if(𝜑, ∅, 1o) = 1o)
5958eqeq1d 2215 . . . . . . . . 9 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → (if(𝜑, ∅, 1o) = ∅ ↔ 1o = ∅))
6056, 59mtbiri 677 . . . . . . . 8 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, ∅, 1o) = ∅)
6160ex 115 . . . . . . 7 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (¬ 𝜑 → ¬ if(𝜑, ∅, 1o) = ∅))
6261con2d 625 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ → ¬ ¬ 𝜑))
63 notnotrdc 845 . . . . . 6 (DECID 𝜑 → (¬ ¬ 𝜑𝜑))
6455, 62, 63sylsyld 58 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ → 𝜑))
6564, 19impbid1 142 . . . 4 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ ↔ 𝜑))
6653, 65bitrd 188 . . 3 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ 𝜑))
6734, 66rexbida 2502 . 2 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ ∃𝑛𝐴 𝜑))
6850, 67mpbid 147 1 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 836  w3a 981  wal 1371   = wceq 1373  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  c0 3464  ifcif 3575  cmpt 4116  wf 5281  cfv 5285  1oc1o 6513  2oc2o 6514  Markovcmarkov 7274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-1o 6520  df-2o 6521  df-markov 7275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator