ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mkvprop GIF version

Theorem mkvprop 7000
Description: Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
Assertion
Ref Expression
mkvprop ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem mkvprop
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nfv 1493 . . . . . . 7 𝑛 𝐴 ∈ Markov
2 nfra1 2443 . . . . . . 7 𝑛𝑛𝐴 DECID 𝜑
31, 2nfan 1529 . . . . . 6 𝑛(𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑)
4 simpr 109 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → 𝑛𝐴)
5 0lt2o 6306 . . . . . . . . . . . 12 ∅ ∈ 2o
65a1i 9 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → ∅ ∈ 2o)
7 1lt2o 6307 . . . . . . . . . . . 12 1o ∈ 2o
87a1i 9 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → 1o ∈ 2o)
9 rsp 2457 . . . . . . . . . . . 12 (∀𝑛𝐴 DECID 𝜑 → (𝑛𝐴DECID 𝜑))
109imp 123 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → DECID 𝜑)
116, 8, 10ifcldcd 3477 . . . . . . . . . 10 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
1211adantll 467 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
13 eqid 2117 . . . . . . . . . 10 (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) = (𝑛𝐴 ↦ if(𝜑, ∅, 1o))
1413fvmpt2 5472 . . . . . . . . 9 ((𝑛𝐴 ∧ if(𝜑, ∅, 1o) ∈ 2o) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
154, 12, 14syl2anc 408 . . . . . . . 8 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
1615eqeq1d 2126 . . . . . . 7 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o ↔ if(𝜑, ∅, 1o) = 1o))
17 1n0 6297 . . . . . . . . . 10 1o ≠ ∅
1817nesymi 2331 . . . . . . . . 9 ¬ ∅ = 1o
19 iftrue 3449 . . . . . . . . . 10 (𝜑 → if(𝜑, ∅, 1o) = ∅)
2019eqeq1d 2126 . . . . . . . . 9 (𝜑 → (if(𝜑, ∅, 1o) = 1o ↔ ∅ = 1o))
2118, 20mtbiri 649 . . . . . . . 8 (𝜑 → ¬ if(𝜑, ∅, 1o) = 1o)
2221con2i 601 . . . . . . 7 (if(𝜑, ∅, 1o) = 1o → ¬ 𝜑)
2316, 22syl6bi 162 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ¬ 𝜑))
243, 23ralimdaa 2475 . . . . 5 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) → (∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∀𝑛𝐴 ¬ 𝜑))
2524con3d 605 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) → (¬ ∀𝑛𝐴 ¬ 𝜑 → ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
26253impia 1163 . . 3 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o)
27 mptexg 5613 . . . . 5 (𝐴 ∈ Markov → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V)
28273ad2ant1 987 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V)
29 ismkv 6995 . . . . . 6 (𝐴 ∈ Markov → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅))))
3029ibi 175 . . . . 5 (𝐴 ∈ Markov → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)))
31303ad2ant1 987 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)))
32 nfra1 2443 . . . . . . 7 𝑛𝑛𝐴 ¬ 𝜑
3332nfn 1621 . . . . . 6 𝑛 ¬ ∀𝑛𝐴 ¬ 𝜑
341, 2, 33nf3an 1530 . . . . 5 𝑛(𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑)
35113ad2antl2 1129 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
3634, 35, 13fmptdf 5545 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o)
37 feq1 5225 . . . . . 6 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓:𝐴⟶2o ↔ (𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o))
38 nfmpt1 3991 . . . . . . . . . 10 𝑛(𝑛𝐴 ↦ if(𝜑, ∅, 1o))
3938nfeq2 2270 . . . . . . . . 9 𝑛 𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o))
40 fveq1 5388 . . . . . . . . . 10 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓𝑛) = ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛))
4140eqeq1d 2126 . . . . . . . . 9 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓𝑛) = 1o ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4239, 41ralbid 2412 . . . . . . . 8 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (∀𝑛𝐴 (𝑓𝑛) = 1o ↔ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4342notbid 641 . . . . . . 7 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o ↔ ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4440eqeq1d 2126 . . . . . . . 8 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓𝑛) = ∅ ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
4539, 44rexbid 2413 . . . . . . 7 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (∃𝑛𝐴 (𝑓𝑛) = ∅ ↔ ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
4643, 45imbi12d 233 . . . . . 6 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅) ↔ (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)))
4737, 46imbi12d 233 . . . . 5 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)) ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))))
4847spcgv 2747 . . . 4 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V → (∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))))
4928, 31, 36, 48syl3c 63 . . 3 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
5026, 49mpd 13 . 2 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)
51 simpr 109 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → 𝑛𝐴)
5251, 35, 14syl2anc 408 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
5352eqeq1d 2126 . . . 4 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ if(𝜑, ∅, 1o) = ∅))
5493ad2ant2 988 . . . . . . 7 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴DECID 𝜑))
5554imp 123 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → DECID 𝜑)
5617neii 2287 . . . . . . . . 9 ¬ 1o = ∅
57 simpr 109 . . . . . . . . . . 11 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → ¬ 𝜑)
5857iffalsed 3454 . . . . . . . . . 10 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → if(𝜑, ∅, 1o) = 1o)
5958eqeq1d 2126 . . . . . . . . 9 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → (if(𝜑, ∅, 1o) = ∅ ↔ 1o = ∅))
6056, 59mtbiri 649 . . . . . . . 8 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, ∅, 1o) = ∅)
6160ex 114 . . . . . . 7 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (¬ 𝜑 → ¬ if(𝜑, ∅, 1o) = ∅))
6261con2d 598 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ → ¬ ¬ 𝜑))
63 notnotrdc 813 . . . . . 6 (DECID 𝜑 → (¬ ¬ 𝜑𝜑))
6455, 62, 63sylsyld 58 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ → 𝜑))
6564, 19impbid1 141 . . . 4 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ ↔ 𝜑))
6653, 65bitrd 187 . . 3 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ 𝜑))
6734, 66rexbida 2409 . 2 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ ∃𝑛𝐴 𝜑))
6850, 67mpbid 146 1 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 804  w3a 947  wal 1314   = wceq 1316  wcel 1465  wral 2393  wrex 2394  Vcvv 2660  c0 3333  ifcif 3444  cmpt 3959  wf 5089  cfv 5093  1oc1o 6274  2oc2o 6275  Markovcmarkov 6993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-1o 6281  df-2o 6282  df-markov 6994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator