Step | Hyp | Ref
| Expression |
1 | | nfv 1521 |
. . . . . . 7
⊢
Ⅎ𝑛 𝐴 ∈ Markov |
2 | | nfra1 2501 |
. . . . . . 7
⊢
Ⅎ𝑛∀𝑛 ∈ 𝐴 DECID 𝜑 |
3 | 1, 2 | nfan 1558 |
. . . . . 6
⊢
Ⅎ𝑛(𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) |
4 | | simpr 109 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
5 | | 0lt2o 6420 |
. . . . . . . . . . . 12
⊢ ∅
∈ 2o |
6 | 5 | a1i 9 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
𝐴 DECID
𝜑 ∧ 𝑛 ∈ 𝐴) → ∅ ∈
2o) |
7 | | 1lt2o 6421 |
. . . . . . . . . . . 12
⊢
1o ∈ 2o |
8 | 7 | a1i 9 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
𝐴 DECID
𝜑 ∧ 𝑛 ∈ 𝐴) → 1o ∈
2o) |
9 | | rsp 2517 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
𝐴 DECID
𝜑 → (𝑛 ∈ 𝐴 → DECID 𝜑)) |
10 | 9 | imp 123 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
𝐴 DECID
𝜑 ∧ 𝑛 ∈ 𝐴) → DECID 𝜑) |
11 | 6, 8, 10 | ifcldcd 3561 |
. . . . . . . . . 10
⊢
((∀𝑛 ∈
𝐴 DECID
𝜑 ∧ 𝑛 ∈ 𝐴) → if(𝜑, ∅, 1o) ∈
2o) |
12 | 11 | adantll 473 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) ∧ 𝑛 ∈ 𝐴) → if(𝜑, ∅, 1o) ∈
2o) |
13 | | eqid 2170 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) |
14 | 13 | fvmpt2 5579 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝐴 ∧ if(𝜑, ∅, 1o) ∈
2o) → ((𝑛
∈ 𝐴 ↦ if(𝜑, ∅,
1o))‘𝑛) =
if(𝜑, ∅,
1o)) |
15 | 4, 12, 14 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) ∧ 𝑛 ∈ 𝐴) → ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o)) |
16 | 15 | eqeq1d 2179 |
. . . . . . 7
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) ∧ 𝑛 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o ↔
if(𝜑, ∅, 1o)
= 1o)) |
17 | | 1n0 6411 |
. . . . . . . . . 10
⊢
1o ≠ ∅ |
18 | 17 | nesymi 2386 |
. . . . . . . . 9
⊢ ¬
∅ = 1o |
19 | | iftrue 3531 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝜑, ∅, 1o) =
∅) |
20 | 19 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (𝜑 → (if(𝜑, ∅, 1o) = 1o
↔ ∅ = 1o)) |
21 | 18, 20 | mtbiri 670 |
. . . . . . . 8
⊢ (𝜑 → ¬ if(𝜑, ∅, 1o) =
1o) |
22 | 21 | con2i 622 |
. . . . . . 7
⊢ (if(𝜑, ∅, 1o) =
1o → ¬ 𝜑) |
23 | 16, 22 | syl6bi 162 |
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) ∧ 𝑛 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ¬
𝜑)) |
24 | 3, 23 | ralimdaa 2536 |
. . . . 5
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) → (∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o →
∀𝑛 ∈ 𝐴 ¬ 𝜑)) |
25 | 24 | con3d 626 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) → (¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) =
1o)) |
26 | 25 | 3impia 1195 |
. . 3
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ¬ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) =
1o) |
27 | | mptexg 5721 |
. . . . 5
⊢ (𝐴 ∈ Markov → (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) ∈
V) |
28 | 27 | 3ad2ant1 1013 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) ∈
V) |
29 | | ismkv 7129 |
. . . . . 6
⊢ (𝐴 ∈ Markov → (𝐴 ∈ Markov ↔
∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅)))) |
30 | 29 | ibi 175 |
. . . . 5
⊢ (𝐴 ∈ Markov →
∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅))) |
31 | 30 | 3ad2ant1 1013 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅))) |
32 | | nfra1 2501 |
. . . . . . 7
⊢
Ⅎ𝑛∀𝑛 ∈ 𝐴 ¬ 𝜑 |
33 | 32 | nfn 1651 |
. . . . . 6
⊢
Ⅎ𝑛 ¬
∀𝑛 ∈ 𝐴 ¬ 𝜑 |
34 | 1, 2, 33 | nf3an 1559 |
. . . . 5
⊢
Ⅎ𝑛(𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) |
35 | 11 | 3ad2antl2 1155 |
. . . . 5
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → if(𝜑, ∅, 1o) ∈
2o) |
36 | 34, 35, 13 | fmptdf 5653 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o) |
37 | | feq1 5330 |
. . . . . 6
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓:𝐴⟶2o ↔ (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o)) |
38 | | nfmpt1 4082 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) |
39 | 38 | nfeq2 2324 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) |
40 | | fveq1 5495 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓‘𝑛) = ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛)) |
41 | 40 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓‘𝑛) = 1o ↔ ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) =
1o)) |
42 | 39, 41 | ralbid 2468 |
. . . . . . . 8
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) →
(∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o ↔ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) =
1o)) |
43 | 42 | notbid 662 |
. . . . . . 7
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o ↔ ¬ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) =
1o)) |
44 | 40 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓‘𝑛) = ∅ ↔ ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)) |
45 | 39, 44 | rexbid 2469 |
. . . . . . 7
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) →
(∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅ ↔ ∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)) |
46 | 43, 45 | imbi12d 233 |
. . . . . 6
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → ((¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅) ↔ (¬ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o →
∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))) |
47 | 37, 46 | imbi12d 233 |
. . . . 5
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓:𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅)) ↔ ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o →
∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)))) |
48 | 47 | spcgv 2817 |
. . . 4
⊢ ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V →
(∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅)) → ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o →
∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)))) |
49 | 28, 31, 36, 48 | syl3c 63 |
. . 3
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → (¬ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o →
∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)) |
50 | 26, 49 | mpd 13 |
. 2
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅) |
51 | | simpr 109 |
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
52 | 51, 35, 14 | syl2anc 409 |
. . . . 5
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o)) |
53 | 52 | eqeq1d 2179 |
. . . 4
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ if(𝜑, ∅, 1o) =
∅)) |
54 | 9 | 3ad2ant2 1014 |
. . . . . . 7
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → (𝑛 ∈ 𝐴 → DECID 𝜑)) |
55 | 54 | imp 123 |
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → DECID 𝜑) |
56 | 17 | neii 2342 |
. . . . . . . . 9
⊢ ¬
1o = ∅ |
57 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) ∧ ¬ 𝜑) → ¬ 𝜑) |
58 | 57 | iffalsed 3536 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) ∧ ¬ 𝜑) → if(𝜑, ∅, 1o) =
1o) |
59 | 58 | eqeq1d 2179 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) ∧ ¬ 𝜑) → (if(𝜑, ∅, 1o) = ∅ ↔
1o = ∅)) |
60 | 56, 59 | mtbiri 670 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, ∅, 1o) =
∅) |
61 | 60 | ex 114 |
. . . . . . 7
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (¬ 𝜑 → ¬ if(𝜑, ∅, 1o) =
∅)) |
62 | 61 | con2d 619 |
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (if(𝜑, ∅, 1o) = ∅ →
¬ ¬ 𝜑)) |
63 | | notnotrdc 838 |
. . . . . 6
⊢
(DECID 𝜑 → (¬ ¬ 𝜑 → 𝜑)) |
64 | 55, 62, 63 | sylsyld 58 |
. . . . 5
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (if(𝜑, ∅, 1o) = ∅ →
𝜑)) |
65 | 64, 19 | impbid1 141 |
. . . 4
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (if(𝜑, ∅, 1o) = ∅ ↔
𝜑)) |
66 | 53, 65 | bitrd 187 |
. . 3
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ 𝜑)) |
67 | 34, 66 | rexbida 2465 |
. 2
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → (∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ ∃𝑛 ∈ 𝐴 𝜑)) |
68 | 50, 67 | mpbid 146 |
1
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∃𝑛 ∈ 𝐴 𝜑) |