ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mkvprop GIF version

Theorem mkvprop 7113
Description: Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
Assertion
Ref Expression
mkvprop ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem mkvprop
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nfv 1515 . . . . . . 7 𝑛 𝐴 ∈ Markov
2 nfra1 2495 . . . . . . 7 𝑛𝑛𝐴 DECID 𝜑
31, 2nfan 1552 . . . . . 6 𝑛(𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑)
4 simpr 109 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → 𝑛𝐴)
5 0lt2o 6400 . . . . . . . . . . . 12 ∅ ∈ 2o
65a1i 9 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → ∅ ∈ 2o)
7 1lt2o 6401 . . . . . . . . . . . 12 1o ∈ 2o
87a1i 9 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → 1o ∈ 2o)
9 rsp 2511 . . . . . . . . . . . 12 (∀𝑛𝐴 DECID 𝜑 → (𝑛𝐴DECID 𝜑))
109imp 123 . . . . . . . . . . 11 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → DECID 𝜑)
116, 8, 10ifcldcd 3550 . . . . . . . . . 10 ((∀𝑛𝐴 DECID 𝜑𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
1211adantll 468 . . . . . . . . 9 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
13 eqid 2164 . . . . . . . . . 10 (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) = (𝑛𝐴 ↦ if(𝜑, ∅, 1o))
1413fvmpt2 5563 . . . . . . . . 9 ((𝑛𝐴 ∧ if(𝜑, ∅, 1o) ∈ 2o) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
154, 12, 14syl2anc 409 . . . . . . . 8 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
1615eqeq1d 2173 . . . . . . 7 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o ↔ if(𝜑, ∅, 1o) = 1o))
17 1n0 6391 . . . . . . . . . 10 1o ≠ ∅
1817nesymi 2380 . . . . . . . . 9 ¬ ∅ = 1o
19 iftrue 3520 . . . . . . . . . 10 (𝜑 → if(𝜑, ∅, 1o) = ∅)
2019eqeq1d 2173 . . . . . . . . 9 (𝜑 → (if(𝜑, ∅, 1o) = 1o ↔ ∅ = 1o))
2118, 20mtbiri 665 . . . . . . . 8 (𝜑 → ¬ if(𝜑, ∅, 1o) = 1o)
2221con2i 617 . . . . . . 7 (if(𝜑, ∅, 1o) = 1o → ¬ 𝜑)
2316, 22syl6bi 162 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ¬ 𝜑))
243, 23ralimdaa 2530 . . . . 5 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) → (∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∀𝑛𝐴 ¬ 𝜑))
2524con3d 621 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑) → (¬ ∀𝑛𝐴 ¬ 𝜑 → ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
26253impia 1189 . . 3 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o)
27 mptexg 5704 . . . . 5 (𝐴 ∈ Markov → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V)
28273ad2ant1 1007 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V)
29 ismkv 7108 . . . . . 6 (𝐴 ∈ Markov → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅))))
3029ibi 175 . . . . 5 (𝐴 ∈ Markov → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)))
31303ad2ant1 1007 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)))
32 nfra1 2495 . . . . . . 7 𝑛𝑛𝐴 ¬ 𝜑
3332nfn 1645 . . . . . 6 𝑛 ¬ ∀𝑛𝐴 ¬ 𝜑
341, 2, 33nf3an 1553 . . . . 5 𝑛(𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑)
35113ad2antl2 1149 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → if(𝜑, ∅, 1o) ∈ 2o)
3634, 35, 13fmptdf 5636 . . . 4 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o)
37 feq1 5314 . . . . . 6 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓:𝐴⟶2o ↔ (𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o))
38 nfmpt1 4069 . . . . . . . . . 10 𝑛(𝑛𝐴 ↦ if(𝜑, ∅, 1o))
3938nfeq2 2318 . . . . . . . . 9 𝑛 𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o))
40 fveq1 5479 . . . . . . . . . 10 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓𝑛) = ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛))
4140eqeq1d 2173 . . . . . . . . 9 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓𝑛) = 1o ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4239, 41ralbid 2462 . . . . . . . 8 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (∀𝑛𝐴 (𝑓𝑛) = 1o ↔ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4342notbid 657 . . . . . . 7 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o ↔ ¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o))
4440eqeq1d 2173 . . . . . . . 8 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓𝑛) = ∅ ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
4539, 44rexbid 2463 . . . . . . 7 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → (∃𝑛𝐴 (𝑓𝑛) = ∅ ↔ ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
4643, 45imbi12d 233 . . . . . 6 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅) ↔ (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)))
4737, 46imbi12d 233 . . . . 5 (𝑓 = (𝑛𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)) ↔ ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))))
4847spcgv 2808 . . . 4 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V → (∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑛𝐴 (𝑓𝑛) = 1o → ∃𝑛𝐴 (𝑓𝑛) = ∅)) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))))
4928, 31, 36, 48syl3c 63 . . 3 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (¬ ∀𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))
5026, 49mpd 13 . 2 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)
51 simpr 109 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → 𝑛𝐴)
5251, 35, 14syl2anc 409 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o))
5352eqeq1d 2173 . . . 4 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ if(𝜑, ∅, 1o) = ∅))
5493ad2ant2 1008 . . . . . . 7 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (𝑛𝐴DECID 𝜑))
5554imp 123 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → DECID 𝜑)
5617neii 2336 . . . . . . . . 9 ¬ 1o = ∅
57 simpr 109 . . . . . . . . . . 11 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → ¬ 𝜑)
5857iffalsed 3525 . . . . . . . . . 10 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → if(𝜑, ∅, 1o) = 1o)
5958eqeq1d 2173 . . . . . . . . 9 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → (if(𝜑, ∅, 1o) = ∅ ↔ 1o = ∅))
6056, 59mtbiri 665 . . . . . . . 8 ((((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, ∅, 1o) = ∅)
6160ex 114 . . . . . . 7 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (¬ 𝜑 → ¬ if(𝜑, ∅, 1o) = ∅))
6261con2d 614 . . . . . 6 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ → ¬ ¬ 𝜑))
63 notnotrdc 833 . . . . . 6 (DECID 𝜑 → (¬ ¬ 𝜑𝜑))
6455, 62, 63sylsyld 58 . . . . 5 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ → 𝜑))
6564, 19impbid1 141 . . . 4 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (if(𝜑, ∅, 1o) = ∅ ↔ 𝜑))
6653, 65bitrd 187 . . 3 (((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) ∧ 𝑛𝐴) → (((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ 𝜑))
6734, 66rexbida 2459 . 2 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → (∃𝑛𝐴 ((𝑛𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ ∃𝑛𝐴 𝜑))
6850, 67mpbid 146 1 ((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 824  w3a 967  wal 1340   = wceq 1342  wcel 2135  wral 2442  wrex 2443  Vcvv 2721  c0 3404  ifcif 3515  cmpt 4037  wf 5178  cfv 5182  1oc1o 6368  2oc2o 6369  Markovcmarkov 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1o 6375  df-2o 6376  df-markov 7107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator