| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1542 |
. . . . . . 7
⊢
Ⅎ𝑛 𝐴 ∈ Markov |
| 2 | | nfra1 2528 |
. . . . . . 7
⊢
Ⅎ𝑛∀𝑛 ∈ 𝐴 DECID 𝜑 |
| 3 | 1, 2 | nfan 1579 |
. . . . . 6
⊢
Ⅎ𝑛(𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) |
| 4 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
| 5 | | 0lt2o 6499 |
. . . . . . . . . . . 12
⊢ ∅
∈ 2o |
| 6 | 5 | a1i 9 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
𝐴 DECID
𝜑 ∧ 𝑛 ∈ 𝐴) → ∅ ∈
2o) |
| 7 | | 1lt2o 6500 |
. . . . . . . . . . . 12
⊢
1o ∈ 2o |
| 8 | 7 | a1i 9 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
𝐴 DECID
𝜑 ∧ 𝑛 ∈ 𝐴) → 1o ∈
2o) |
| 9 | | rsp 2544 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
𝐴 DECID
𝜑 → (𝑛 ∈ 𝐴 → DECID 𝜑)) |
| 10 | 9 | imp 124 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
𝐴 DECID
𝜑 ∧ 𝑛 ∈ 𝐴) → DECID 𝜑) |
| 11 | 6, 8, 10 | ifcldcd 3597 |
. . . . . . . . . 10
⊢
((∀𝑛 ∈
𝐴 DECID
𝜑 ∧ 𝑛 ∈ 𝐴) → if(𝜑, ∅, 1o) ∈
2o) |
| 12 | 11 | adantll 476 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) ∧ 𝑛 ∈ 𝐴) → if(𝜑, ∅, 1o) ∈
2o) |
| 13 | | eqid 2196 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) |
| 14 | 13 | fvmpt2 5645 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝐴 ∧ if(𝜑, ∅, 1o) ∈
2o) → ((𝑛
∈ 𝐴 ↦ if(𝜑, ∅,
1o))‘𝑛) =
if(𝜑, ∅,
1o)) |
| 15 | 4, 12, 14 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) ∧ 𝑛 ∈ 𝐴) → ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o)) |
| 16 | 15 | eqeq1d 2205 |
. . . . . . 7
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) ∧ 𝑛 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o ↔
if(𝜑, ∅, 1o)
= 1o)) |
| 17 | | 1n0 6490 |
. . . . . . . . . 10
⊢
1o ≠ ∅ |
| 18 | 17 | nesymi 2413 |
. . . . . . . . 9
⊢ ¬
∅ = 1o |
| 19 | | iftrue 3566 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝜑, ∅, 1o) =
∅) |
| 20 | 19 | eqeq1d 2205 |
. . . . . . . . 9
⊢ (𝜑 → (if(𝜑, ∅, 1o) = 1o
↔ ∅ = 1o)) |
| 21 | 18, 20 | mtbiri 676 |
. . . . . . . 8
⊢ (𝜑 → ¬ if(𝜑, ∅, 1o) =
1o) |
| 22 | 21 | con2i 628 |
. . . . . . 7
⊢ (if(𝜑, ∅, 1o) =
1o → ¬ 𝜑) |
| 23 | 16, 22 | biimtrdi 163 |
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) ∧ 𝑛 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o → ¬
𝜑)) |
| 24 | 3, 23 | ralimdaa 2563 |
. . . . 5
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) → (∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o →
∀𝑛 ∈ 𝐴 ¬ 𝜑)) |
| 25 | 24 | con3d 632 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑) → (¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑 → ¬ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) =
1o)) |
| 26 | 25 | 3impia 1202 |
. . 3
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ¬ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) =
1o) |
| 27 | | mptexg 5787 |
. . . . 5
⊢ (𝐴 ∈ Markov → (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) ∈
V) |
| 28 | 27 | 3ad2ant1 1020 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) ∈
V) |
| 29 | | ismkv 7219 |
. . . . . 6
⊢ (𝐴 ∈ Markov → (𝐴 ∈ Markov ↔
∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅)))) |
| 30 | 29 | ibi 176 |
. . . . 5
⊢ (𝐴 ∈ Markov →
∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅))) |
| 31 | 30 | 3ad2ant1 1020 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅))) |
| 32 | | nfra1 2528 |
. . . . . . 7
⊢
Ⅎ𝑛∀𝑛 ∈ 𝐴 ¬ 𝜑 |
| 33 | 32 | nfn 1672 |
. . . . . 6
⊢
Ⅎ𝑛 ¬
∀𝑛 ∈ 𝐴 ¬ 𝜑 |
| 34 | 1, 2, 33 | nf3an 1580 |
. . . . 5
⊢
Ⅎ𝑛(𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) |
| 35 | 11 | 3ad2antl2 1162 |
. . . . 5
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → if(𝜑, ∅, 1o) ∈
2o) |
| 36 | 34, 35, 13 | fmptdf 5719 |
. . . 4
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o) |
| 37 | | feq1 5390 |
. . . . . 6
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓:𝐴⟶2o ↔ (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o)) |
| 38 | | nfmpt1 4126 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) |
| 39 | 38 | nfeq2 2351 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) |
| 40 | | fveq1 5557 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → (𝑓‘𝑛) = ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛)) |
| 41 | 40 | eqeq1d 2205 |
. . . . . . . . 9
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓‘𝑛) = 1o ↔ ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) =
1o)) |
| 42 | 39, 41 | ralbid 2495 |
. . . . . . . 8
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) →
(∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o ↔ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) =
1o)) |
| 43 | 42 | notbid 668 |
. . . . . . 7
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o ↔ ¬ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) =
1o)) |
| 44 | 40 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓‘𝑛) = ∅ ↔ ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)) |
| 45 | 39, 44 | rexbid 2496 |
. . . . . . 7
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) →
(∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅ ↔ ∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)) |
| 46 | 43, 45 | imbi12d 234 |
. . . . . 6
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → ((¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅) ↔ (¬ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o →
∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅))) |
| 47 | 37, 46 | imbi12d 234 |
. . . . 5
⊢ (𝑓 = (𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) → ((𝑓:𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅)) ↔ ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o →
∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)))) |
| 48 | 47 | spcgv 2851 |
. . . 4
⊢ ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)) ∈ V →
(∀𝑓(𝑓:𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 (𝑓‘𝑛) = 1o → ∃𝑛 ∈ 𝐴 (𝑓‘𝑛) = ∅)) → ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o)):𝐴⟶2o → (¬
∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o →
∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)))) |
| 49 | 28, 31, 36, 48 | syl3c 63 |
. . 3
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → (¬ ∀𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = 1o →
∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅)) |
| 50 | 26, 49 | mpd 13 |
. 2
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅) |
| 51 | | simpr 110 |
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
| 52 | 51, 35, 14 | syl2anc 411 |
. . . . 5
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = if(𝜑, ∅, 1o)) |
| 53 | 52 | eqeq1d 2205 |
. . . 4
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ if(𝜑, ∅, 1o) =
∅)) |
| 54 | 9 | 3ad2ant2 1021 |
. . . . . . 7
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → (𝑛 ∈ 𝐴 → DECID 𝜑)) |
| 55 | 54 | imp 124 |
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → DECID 𝜑) |
| 56 | 17 | neii 2369 |
. . . . . . . . 9
⊢ ¬
1o = ∅ |
| 57 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) ∧ ¬ 𝜑) → ¬ 𝜑) |
| 58 | 57 | iffalsed 3571 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) ∧ ¬ 𝜑) → if(𝜑, ∅, 1o) =
1o) |
| 59 | 58 | eqeq1d 2205 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) ∧ ¬ 𝜑) → (if(𝜑, ∅, 1o) = ∅ ↔
1o = ∅)) |
| 60 | 56, 59 | mtbiri 676 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, ∅, 1o) =
∅) |
| 61 | 60 | ex 115 |
. . . . . . 7
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (¬ 𝜑 → ¬ if(𝜑, ∅, 1o) =
∅)) |
| 62 | 61 | con2d 625 |
. . . . . 6
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (if(𝜑, ∅, 1o) = ∅ →
¬ ¬ 𝜑)) |
| 63 | | notnotrdc 844 |
. . . . . 6
⊢
(DECID 𝜑 → (¬ ¬ 𝜑 → 𝜑)) |
| 64 | 55, 62, 63 | sylsyld 58 |
. . . . 5
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (if(𝜑, ∅, 1o) = ∅ →
𝜑)) |
| 65 | 64, 19 | impbid1 142 |
. . . 4
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (if(𝜑, ∅, 1o) = ∅ ↔
𝜑)) |
| 66 | 53, 65 | bitrd 188 |
. . 3
⊢ (((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) ∧ 𝑛 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ 𝜑)) |
| 67 | 34, 66 | rexbida 2492 |
. 2
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → (∃𝑛 ∈ 𝐴 ((𝑛 ∈ 𝐴 ↦ if(𝜑, ∅, 1o))‘𝑛) = ∅ ↔ ∃𝑛 ∈ 𝐴 𝜑)) |
| 68 | 50, 67 | mpbid 147 |
1
⊢ ((𝐴 ∈ Markov ∧
∀𝑛 ∈ 𝐴 DECID 𝜑 ∧ ¬ ∀𝑛 ∈ 𝐴 ¬ 𝜑) → ∃𝑛 ∈ 𝐴 𝜑) |