ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orel1 GIF version

Theorem orel1 729
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
Assertion
Ref Expression
orel1 𝜑 → ((𝜑𝜓) → 𝜓))

Proof of Theorem orel1
StepHypRef Expression
1 pm2.53 726 . 2 ((𝜑𝜓) → (¬ 𝜑𝜓))
21com12 30 1 𝜑 → ((𝜑𝜓) → 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 713
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biorf  748  pm2.25dc  897  pm2.85dc  909  euor2  2116  prel12  3828  funun  5338  acexmidlema  5965  acexmidlemb  5966  sup3exmid  9072  pythagtriplem4  12757  umgrislfupgrenlem  15893
  Copyright terms: Public domain W3C validator