ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemb GIF version

Theorem acexmidlemb 5759
Description: Lemma for acexmid 5766. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlemb (∅ ∈ 𝐵𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem acexmidlemb
StepHypRef Expression
1 acexmidlem.b . . . 4 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
21eleq2i 2204 . . 3 (∅ ∈ 𝐵 ↔ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)})
3 0ex 4050 . . . . 5 ∅ ∈ V
43prid1 3624 . . . 4 ∅ ∈ {∅, {∅}}
5 eqeq1 2144 . . . . . 6 (𝑥 = ∅ → (𝑥 = {∅} ↔ ∅ = {∅}))
65orbi1d 780 . . . . 5 (𝑥 = ∅ → ((𝑥 = {∅} ∨ 𝜑) ↔ (∅ = {∅} ∨ 𝜑)))
76elrab3 2836 . . . 4 (∅ ∈ {∅, {∅}} → (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ (∅ = {∅} ∨ 𝜑)))
84, 7ax-mp 5 . . 3 (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ (∅ = {∅} ∨ 𝜑))
92, 8bitri 183 . 2 (∅ ∈ 𝐵 ↔ (∅ = {∅} ∨ 𝜑))
10 noel 3362 . . . 4 ¬ ∅ ∈ ∅
113snid 3551 . . . . 5 ∅ ∈ {∅}
12 eleq2 2201 . . . . 5 (∅ = {∅} → (∅ ∈ ∅ ↔ ∅ ∈ {∅}))
1311, 12mpbiri 167 . . . 4 (∅ = {∅} → ∅ ∈ ∅)
1410, 13mto 651 . . 3 ¬ ∅ = {∅}
15 orel1 714 . . 3 (¬ ∅ = {∅} → ((∅ = {∅} ∨ 𝜑) → 𝜑))
1614, 15ax-mp 5 . 2 ((∅ = {∅} ∨ 𝜑) → 𝜑)
179, 16sylbi 120 1 (∅ ∈ 𝐵𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 697   = wceq 1331  wcel 1480  {crab 2418  c0 3358  {csn 3522  {cpr 3523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-nul 4049
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rab 2423  df-v 2683  df-dif 3068  df-un 3070  df-nul 3359  df-sn 3528  df-pr 3529
This theorem is referenced by:  acexmidlem1  5763
  Copyright terms: Public domain W3C validator