ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemb GIF version

Theorem acexmidlemb 5948
Description: Lemma for acexmid 5955. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlemb (∅ ∈ 𝐵𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem acexmidlemb
StepHypRef Expression
1 acexmidlem.b . . . 4 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
21eleq2i 2273 . . 3 (∅ ∈ 𝐵 ↔ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)})
3 0ex 4178 . . . . 5 ∅ ∈ V
43prid1 3743 . . . 4 ∅ ∈ {∅, {∅}}
5 eqeq1 2213 . . . . . 6 (𝑥 = ∅ → (𝑥 = {∅} ↔ ∅ = {∅}))
65orbi1d 793 . . . . 5 (𝑥 = ∅ → ((𝑥 = {∅} ∨ 𝜑) ↔ (∅ = {∅} ∨ 𝜑)))
76elrab3 2934 . . . 4 (∅ ∈ {∅, {∅}} → (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ (∅ = {∅} ∨ 𝜑)))
84, 7ax-mp 5 . . 3 (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ (∅ = {∅} ∨ 𝜑))
92, 8bitri 184 . 2 (∅ ∈ 𝐵 ↔ (∅ = {∅} ∨ 𝜑))
10 noel 3468 . . . 4 ¬ ∅ ∈ ∅
113snid 3668 . . . . 5 ∅ ∈ {∅}
12 eleq2 2270 . . . . 5 (∅ = {∅} → (∅ ∈ ∅ ↔ ∅ ∈ {∅}))
1311, 12mpbiri 168 . . . 4 (∅ = {∅} → ∅ ∈ ∅)
1410, 13mto 664 . . 3 ¬ ∅ = {∅}
15 orel1 727 . . 3 (¬ ∅ = {∅} → ((∅ = {∅} ∨ 𝜑) → 𝜑))
1614, 15ax-mp 5 . 2 ((∅ = {∅} ∨ 𝜑) → 𝜑)
179, 16sylbi 121 1 (∅ ∈ 𝐵𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 710   = wceq 1373  wcel 2177  {crab 2489  c0 3464  {csn 3637  {cpr 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4177
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-nul 3465  df-sn 3643  df-pr 3644
This theorem is referenced by:  acexmidlem1  5952
  Copyright terms: Public domain W3C validator