Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acexmidlemb | GIF version |
Description: Lemma for acexmid 5852. (Contributed by Jim Kingdon, 6-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlem.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
acexmidlem.b | ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
acexmidlem.c | ⊢ 𝐶 = {𝐴, 𝐵} |
Ref | Expression |
---|---|
acexmidlemb | ⊢ (∅ ∈ 𝐵 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acexmidlem.b | . . . 4 ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} | |
2 | 1 | eleq2i 2237 | . . 3 ⊢ (∅ ∈ 𝐵 ↔ ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}) |
3 | 0ex 4116 | . . . . 5 ⊢ ∅ ∈ V | |
4 | 3 | prid1 3689 | . . . 4 ⊢ ∅ ∈ {∅, {∅}} |
5 | eqeq1 2177 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝑥 = {∅} ↔ ∅ = {∅})) | |
6 | 5 | orbi1d 786 | . . . . 5 ⊢ (𝑥 = ∅ → ((𝑥 = {∅} ∨ 𝜑) ↔ (∅ = {∅} ∨ 𝜑))) |
7 | 6 | elrab3 2887 | . . . 4 ⊢ (∅ ∈ {∅, {∅}} → (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ (∅ = {∅} ∨ 𝜑))) |
8 | 4, 7 | ax-mp 5 | . . 3 ⊢ (∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ (∅ = {∅} ∨ 𝜑)) |
9 | 2, 8 | bitri 183 | . 2 ⊢ (∅ ∈ 𝐵 ↔ (∅ = {∅} ∨ 𝜑)) |
10 | noel 3418 | . . . 4 ⊢ ¬ ∅ ∈ ∅ | |
11 | 3 | snid 3614 | . . . . 5 ⊢ ∅ ∈ {∅} |
12 | eleq2 2234 | . . . . 5 ⊢ (∅ = {∅} → (∅ ∈ ∅ ↔ ∅ ∈ {∅})) | |
13 | 11, 12 | mpbiri 167 | . . . 4 ⊢ (∅ = {∅} → ∅ ∈ ∅) |
14 | 10, 13 | mto 657 | . . 3 ⊢ ¬ ∅ = {∅} |
15 | orel1 720 | . . 3 ⊢ (¬ ∅ = {∅} → ((∅ = {∅} ∨ 𝜑) → 𝜑)) | |
16 | 14, 15 | ax-mp 5 | . 2 ⊢ ((∅ = {∅} ∨ 𝜑) → 𝜑) |
17 | 9, 16 | sylbi 120 | 1 ⊢ (∅ ∈ 𝐵 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 {crab 2452 ∅c0 3414 {csn 3583 {cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-nul 4115 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-nul 3415 df-sn 3589 df-pr 3590 |
This theorem is referenced by: acexmidlem1 5849 |
Copyright terms: Public domain | W3C validator |