![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > acexmidlema | GIF version |
Description: Lemma for acexmid 5917. (Contributed by Jim Kingdon, 6-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlem.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
acexmidlem.b | ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
acexmidlem.c | ⊢ 𝐶 = {𝐴, 𝐵} |
Ref | Expression |
---|---|
acexmidlema | ⊢ ({∅} ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acexmidlem.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} | |
2 | 1 | eleq2i 2260 | . . 3 ⊢ ({∅} ∈ 𝐴 ↔ {∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) |
3 | p0ex 4217 | . . . . 5 ⊢ {∅} ∈ V | |
4 | 3 | prid2 3725 | . . . 4 ⊢ {∅} ∈ {∅, {∅}} |
5 | eqeq1 2200 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅)) | |
6 | 5 | orbi1d 792 | . . . . 5 ⊢ (𝑥 = {∅} → ((𝑥 = ∅ ∨ 𝜑) ↔ ({∅} = ∅ ∨ 𝜑))) |
7 | 6 | elrab3 2917 | . . . 4 ⊢ ({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ({∅} = ∅ ∨ 𝜑))) |
8 | 4, 7 | ax-mp 5 | . . 3 ⊢ ({∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ({∅} = ∅ ∨ 𝜑)) |
9 | 2, 8 | bitri 184 | . 2 ⊢ ({∅} ∈ 𝐴 ↔ ({∅} = ∅ ∨ 𝜑)) |
10 | noel 3450 | . . . 4 ⊢ ¬ ∅ ∈ ∅ | |
11 | 0ex 4156 | . . . . . 6 ⊢ ∅ ∈ V | |
12 | 11 | snid 3649 | . . . . 5 ⊢ ∅ ∈ {∅} |
13 | eleq2 2257 | . . . . 5 ⊢ ({∅} = ∅ → (∅ ∈ {∅} ↔ ∅ ∈ ∅)) | |
14 | 12, 13 | mpbii 148 | . . . 4 ⊢ ({∅} = ∅ → ∅ ∈ ∅) |
15 | 10, 14 | mto 663 | . . 3 ⊢ ¬ {∅} = ∅ |
16 | orel1 726 | . . 3 ⊢ (¬ {∅} = ∅ → (({∅} = ∅ ∨ 𝜑) → 𝜑)) | |
17 | 15, 16 | ax-mp 5 | . 2 ⊢ (({∅} = ∅ ∨ 𝜑) → 𝜑) |
18 | 9, 17 | sylbi 121 | 1 ⊢ ({∅} ∈ 𝐴 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 {crab 2476 ∅c0 3446 {csn 3618 {cpr 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 |
This theorem is referenced by: acexmidlem1 5914 |
Copyright terms: Public domain | W3C validator |