| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlema | GIF version | ||
| Description: Lemma for acexmid 5924. (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlem.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
| acexmidlem.b | ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
| acexmidlem.c | ⊢ 𝐶 = {𝐴, 𝐵} |
| Ref | Expression |
|---|---|
| acexmidlema | ⊢ ({∅} ∈ 𝐴 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acexmidlem.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} | |
| 2 | 1 | eleq2i 2263 | . . 3 ⊢ ({∅} ∈ 𝐴 ↔ {∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) |
| 3 | p0ex 4222 | . . . . 5 ⊢ {∅} ∈ V | |
| 4 | 3 | prid2 3730 | . . . 4 ⊢ {∅} ∈ {∅, {∅}} |
| 5 | eqeq1 2203 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅)) | |
| 6 | 5 | orbi1d 792 | . . . . 5 ⊢ (𝑥 = {∅} → ((𝑥 = ∅ ∨ 𝜑) ↔ ({∅} = ∅ ∨ 𝜑))) |
| 7 | 6 | elrab3 2921 | . . . 4 ⊢ ({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ({∅} = ∅ ∨ 𝜑))) |
| 8 | 4, 7 | ax-mp 5 | . . 3 ⊢ ({∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ({∅} = ∅ ∨ 𝜑)) |
| 9 | 2, 8 | bitri 184 | . 2 ⊢ ({∅} ∈ 𝐴 ↔ ({∅} = ∅ ∨ 𝜑)) |
| 10 | noel 3455 | . . . 4 ⊢ ¬ ∅ ∈ ∅ | |
| 11 | 0ex 4161 | . . . . . 6 ⊢ ∅ ∈ V | |
| 12 | 11 | snid 3654 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 13 | eleq2 2260 | . . . . 5 ⊢ ({∅} = ∅ → (∅ ∈ {∅} ↔ ∅ ∈ ∅)) | |
| 14 | 12, 13 | mpbii 148 | . . . 4 ⊢ ({∅} = ∅ → ∅ ∈ ∅) |
| 15 | 10, 14 | mto 663 | . . 3 ⊢ ¬ {∅} = ∅ |
| 16 | orel1 726 | . . 3 ⊢ (¬ {∅} = ∅ → (({∅} = ∅ ∨ 𝜑) → 𝜑)) | |
| 17 | 15, 16 | ax-mp 5 | . 2 ⊢ (({∅} = ∅ ∨ 𝜑) → 𝜑) |
| 18 | 9, 17 | sylbi 121 | 1 ⊢ ({∅} ∈ 𝐴 → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 {crab 2479 ∅c0 3451 {csn 3623 {cpr 3624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 |
| This theorem is referenced by: acexmidlem1 5921 |
| Copyright terms: Public domain | W3C validator |