![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > acexmidlema | GIF version |
Description: Lemma for acexmid 5876. (Contributed by Jim Kingdon, 6-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlem.a | ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
acexmidlem.b | ⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
acexmidlem.c | ⊢ 𝐶 = {𝐴, 𝐵} |
Ref | Expression |
---|---|
acexmidlema | ⊢ ({∅} ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acexmidlem.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} | |
2 | 1 | eleq2i 2244 | . . 3 ⊢ ({∅} ∈ 𝐴 ↔ {∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) |
3 | p0ex 4190 | . . . . 5 ⊢ {∅} ∈ V | |
4 | 3 | prid2 3701 | . . . 4 ⊢ {∅} ∈ {∅, {∅}} |
5 | eqeq1 2184 | . . . . . 6 ⊢ (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅)) | |
6 | 5 | orbi1d 791 | . . . . 5 ⊢ (𝑥 = {∅} → ((𝑥 = ∅ ∨ 𝜑) ↔ ({∅} = ∅ ∨ 𝜑))) |
7 | 6 | elrab3 2896 | . . . 4 ⊢ ({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ({∅} = ∅ ∨ 𝜑))) |
8 | 4, 7 | ax-mp 5 | . . 3 ⊢ ({∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ({∅} = ∅ ∨ 𝜑)) |
9 | 2, 8 | bitri 184 | . 2 ⊢ ({∅} ∈ 𝐴 ↔ ({∅} = ∅ ∨ 𝜑)) |
10 | noel 3428 | . . . 4 ⊢ ¬ ∅ ∈ ∅ | |
11 | 0ex 4132 | . . . . . 6 ⊢ ∅ ∈ V | |
12 | 11 | snid 3625 | . . . . 5 ⊢ ∅ ∈ {∅} |
13 | eleq2 2241 | . . . . 5 ⊢ ({∅} = ∅ → (∅ ∈ {∅} ↔ ∅ ∈ ∅)) | |
14 | 12, 13 | mpbii 148 | . . . 4 ⊢ ({∅} = ∅ → ∅ ∈ ∅) |
15 | 10, 14 | mto 662 | . . 3 ⊢ ¬ {∅} = ∅ |
16 | orel1 725 | . . 3 ⊢ (¬ {∅} = ∅ → (({∅} = ∅ ∨ 𝜑) → 𝜑)) | |
17 | 15, 16 | ax-mp 5 | . 2 ⊢ (({∅} = ∅ ∨ 𝜑) → 𝜑) |
18 | 9, 17 | sylbi 121 | 1 ⊢ ({∅} ∈ 𝐴 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 {crab 2459 ∅c0 3424 {csn 3594 {cpr 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 |
This theorem is referenced by: acexmidlem1 5873 |
Copyright terms: Public domain | W3C validator |