ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlema GIF version

Theorem acexmidlema 5833
Description: Lemma for acexmid 5841. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlema ({∅} ∈ 𝐴𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem acexmidlema
StepHypRef Expression
1 acexmidlem.a . . . 4 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
21eleq2i 2233 . . 3 ({∅} ∈ 𝐴 ↔ {∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
3 p0ex 4167 . . . . 5 {∅} ∈ V
43prid2 3683 . . . 4 {∅} ∈ {∅, {∅}}
5 eqeq1 2172 . . . . . 6 (𝑥 = {∅} → (𝑥 = ∅ ↔ {∅} = ∅))
65orbi1d 781 . . . . 5 (𝑥 = {∅} → ((𝑥 = ∅ ∨ 𝜑) ↔ ({∅} = ∅ ∨ 𝜑)))
76elrab3 2883 . . . 4 ({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ({∅} = ∅ ∨ 𝜑)))
84, 7ax-mp 5 . . 3 ({∅} ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ({∅} = ∅ ∨ 𝜑))
92, 8bitri 183 . 2 ({∅} ∈ 𝐴 ↔ ({∅} = ∅ ∨ 𝜑))
10 noel 3413 . . . 4 ¬ ∅ ∈ ∅
11 0ex 4109 . . . . . 6 ∅ ∈ V
1211snid 3607 . . . . 5 ∅ ∈ {∅}
13 eleq2 2230 . . . . 5 ({∅} = ∅ → (∅ ∈ {∅} ↔ ∅ ∈ ∅))
1412, 13mpbii 147 . . . 4 ({∅} = ∅ → ∅ ∈ ∅)
1510, 14mto 652 . . 3 ¬ {∅} = ∅
16 orel1 715 . . 3 (¬ {∅} = ∅ → (({∅} = ∅ ∨ 𝜑) → 𝜑))
1715, 16ax-mp 5 . 2 (({∅} = ∅ ∨ 𝜑) → 𝜑)
189, 17sylbi 120 1 ({∅} ∈ 𝐴𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 698   = wceq 1343  wcel 2136  {crab 2448  c0 3409  {csn 3576  {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583
This theorem is referenced by:  acexmidlem1  5838
  Copyright terms: Public domain W3C validator