Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveeq2or GIF version

Theorem dveeq2or 1788
 Description: Quantifier introduction when one pair of variables is distinct. Like dveeq2 1787 but connecting ∀𝑥𝑥 = 𝑦 by a disjunction rather than negation and implication makes the theorem stronger in intuitionistic logic. (Contributed by Jim Kingdon, 1-Feb-2018.)
Assertion
Ref Expression
dveeq2or (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveeq2or
StepHypRef Expression
1 ax-i12 1485 . . . . . 6 (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
2 orass 756 . . . . . 6 (((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))))
31, 2mpbir 145 . . . . 5 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
4 pm1.4 716 . . . . . 6 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧))
54orim1i 749 . . . . 5 (((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
63, 5ax-mp 5 . . . 4 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
7 orass 756 . . . 4 (((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))))
86, 7mpbi 144 . . 3 (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
9 ax16 1785 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
109a5i 1522 . . . . 5 (∀𝑥 𝑥 = 𝑧 → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
11 id 19 . . . . 5 (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
1210, 11jaoi 705 . . . 4 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
1312orim2i 750 . . 3 ((∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
148, 13ax-mp 5 . 2 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
15 df-nf 1437 . . . 4 (Ⅎ𝑥 𝑧 = 𝑦 ↔ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
1615biimpri 132 . . 3 (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦)
1716orim2i 750 . 2 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦))
1814, 17ax-mp 5 1 (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ wo 697  ∀wal 1329  Ⅎwnf 1436 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736 This theorem is referenced by:  equs5or  1802  sbal1yz  1976  copsexg  4166
 Copyright terms: Public domain W3C validator