ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveeq2or GIF version

Theorem dveeq2or 1804
Description: Quantifier introduction when one pair of variables is distinct. Like dveeq2 1803 but connecting 𝑥𝑥 = 𝑦 by a disjunction rather than negation and implication makes the theorem stronger in intuitionistic logic. (Contributed by Jim Kingdon, 1-Feb-2018.)
Assertion
Ref Expression
dveeq2or (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveeq2or
StepHypRef Expression
1 ax12or 1496 . . . . . 6 (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
2 orass 757 . . . . . 6 (((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))))
31, 2mpbir 145 . . . . 5 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
4 pm1.4 717 . . . . . 6 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧))
54orim1i 750 . . . . 5 (((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
63, 5ax-mp 5 . . . 4 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
7 orass 757 . . . 4 (((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))))
86, 7mpbi 144 . . 3 (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
9 ax16 1801 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
109a5i 1531 . . . . 5 (∀𝑥 𝑥 = 𝑧 → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
11 id 19 . . . . 5 (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
1210, 11jaoi 706 . . . 4 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
1312orim2i 751 . . 3 ((∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
148, 13ax-mp 5 . 2 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
15 df-nf 1449 . . . 4 (Ⅎ𝑥 𝑧 = 𝑦 ↔ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
1615biimpri 132 . . 3 (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦)
1716orim2i 751 . 2 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦))
1814, 17ax-mp 5 1 (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  equs5or  1818  sbal1yz  1989  copsexg  4222
  Copyright terms: Public domain W3C validator