ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveeq2or GIF version

Theorem dveeq2or 1816
Description: Quantifier introduction when one pair of variables is distinct. Like dveeq2 1815 but connecting 𝑥𝑥 = 𝑦 by a disjunction rather than negation and implication makes the theorem stronger in intuitionistic logic. (Contributed by Jim Kingdon, 1-Feb-2018.)
Assertion
Ref Expression
dveeq2or (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveeq2or
StepHypRef Expression
1 ax12or 1508 . . . . . 6 (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
2 orass 767 . . . . . 6 (((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))))
31, 2mpbir 146 . . . . 5 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
4 pm1.4 727 . . . . . 6 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧))
54orim1i 760 . . . . 5 (((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
63, 5ax-mp 5 . . . 4 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
7 orass 767 . . . 4 (((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))))
86, 7mpbi 145 . . 3 (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
9 ax16 1813 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
109a5i 1543 . . . . 5 (∀𝑥 𝑥 = 𝑧 → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
11 id 19 . . . . 5 (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
1210, 11jaoi 716 . . . 4 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
1312orim2i 761 . . 3 ((∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
148, 13ax-mp 5 . 2 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
15 df-nf 1461 . . . 4 (Ⅎ𝑥 𝑧 = 𝑦 ↔ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
1615biimpri 133 . . 3 (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦)
1716orim2i 761 . 2 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦))
1814, 17ax-mp 5 1 (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708  wal 1351  wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  equs5or  1830  sbal1yz  2001  copsexg  4244
  Copyright terms: Public domain W3C validator