Proof of Theorem dveeq2or
Step | Hyp | Ref
| Expression |
1 | | ax12or 1501 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) |
2 | | orass 762 |
. . . . . 6
⊢
(((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))) |
3 | 1, 2 | mpbir 145 |
. . . . 5
⊢
((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
4 | | pm1.4 722 |
. . . . . 6
⊢
((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧)) |
5 | 4 | orim1i 755 |
. . . . 5
⊢
(((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) |
6 | 3, 5 | ax-mp 5 |
. . . 4
⊢
((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
7 | | orass 762 |
. . . 4
⊢
(((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))) |
8 | 6, 7 | mpbi 144 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) |
9 | | ax16 1806 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
10 | 9 | a5i 1536 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
11 | | id 19 |
. . . . 5
⊢
(∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
12 | 10, 11 | jaoi 711 |
. . . 4
⊢
((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
13 | 12 | orim2i 756 |
. . 3
⊢
((∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) |
14 | 8, 13 | ax-mp 5 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
15 | | df-nf 1454 |
. . . 4
⊢
(Ⅎ𝑥 𝑧 = 𝑦 ↔ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
16 | 15 | biimpri 132 |
. . 3
⊢
(∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦) |
17 | 16 | orim2i 756 |
. 2
⊢
((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)) |
18 | 14, 17 | ax-mp 5 |
1
⊢
(∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦) |