Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylanb | GIF version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanb.1 | ⊢ (𝜑 ↔ 𝜓) |
sylanb.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylanb | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylanb.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 281 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl2anb 289 anabsan 570 2exeu 2111 eqtr2 2189 pm13.181 2422 rmob 3047 disjne 3467 seex 4318 tron 4365 fssres 5371 funbrfvb 5537 funopfvb 5538 fvelrnb 5542 fvco 5564 fvimacnvi 5607 ffvresb 5656 funresdfunsnss 5696 fvtp2g 5702 fvtp2 5705 fnex 5715 funex 5716 1st2nd 6157 dftpos4 6239 nnmsucr 6464 nnmcan 6495 xpmapenlem 6823 fundmfibi 6912 sup3exmid 8860 nzadd 9251 peano5uzti 9307 fnn0ind 9315 uztrn2 9491 irradd 9592 xltnegi 9779 xaddnemnf 9801 xaddnepnf 9802 xaddcom 9805 xnegdi 9812 elioore 9856 uzsubsubfz1 9991 fzo1fzo0n0 10126 elfzonelfzo 10173 qbtwnxr 10201 faclbnd 10662 faclbnd3 10664 dvdsprime 12063 pcgcd 12269 restuni 12887 stoig 12888 cnnei 12947 tgioo 13261 divcnap 13270 lgsdi 13653 bj-indind 13889 |
Copyright terms: Public domain | W3C validator |