Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylanb | GIF version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanb.1 | ⊢ (𝜑 ↔ 𝜓) |
sylanb.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylanb | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylanb.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 281 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl2anb 289 anabsan 565 2exeu 2106 eqtr2 2184 pm13.181 2418 rmob 3043 disjne 3462 seex 4313 tron 4360 fssres 5363 funbrfvb 5529 funopfvb 5530 fvelrnb 5534 fvco 5556 fvimacnvi 5599 ffvresb 5648 funresdfunsnss 5688 fvtp2g 5694 fvtp2 5697 fnex 5707 funex 5708 1st2nd 6149 dftpos4 6231 nnmsucr 6456 nnmcan 6487 xpmapenlem 6815 fundmfibi 6904 sup3exmid 8852 nzadd 9243 peano5uzti 9299 fnn0ind 9307 uztrn2 9483 irradd 9584 xltnegi 9771 xaddnemnf 9793 xaddnepnf 9794 xaddcom 9797 xnegdi 9804 elioore 9848 uzsubsubfz1 9983 fzo1fzo0n0 10118 elfzonelfzo 10165 qbtwnxr 10193 faclbnd 10654 faclbnd3 10656 dvdsprime 12054 pcgcd 12260 restuni 12812 stoig 12813 cnnei 12872 tgioo 13186 divcnap 13195 lgsdi 13578 bj-indind 13814 |
Copyright terms: Public domain | W3C validator |