| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylanb | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylanb.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylanb | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylanb.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 283 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2147 eqtr2 2225 pm13.181 2459 rmob 3095 disjne 3518 seex 4390 tron 4437 fssres 5463 funbrfvb 5634 funopfvb 5635 fvelrnb 5639 fvco 5662 fvimacnvi 5707 ffvresb 5756 funresdfunsnss 5800 fvtp2g 5806 fvtp2 5809 fnex 5819 funex 5820 1st2nd 6280 dftpos4 6362 nnmsucr 6587 nnmcan 6618 xpmapenlem 6961 fundmfibi 7055 sup3exmid 9050 nzadd 9445 peano5uzti 9501 fnn0ind 9509 uztrn2 9686 irradd 9787 xltnegi 9977 xaddnemnf 9999 xaddnepnf 10000 xaddcom 10003 xnegdi 10010 elioore 10054 uzsubsubfz1 10190 fzo1fzo0n0 10329 elfzonelfzo 10381 qbtwnxr 10422 faclbnd 10908 faclbnd3 10910 dvdsprime 12519 pcgcd 12727 znf1o 14488 restuni 14719 stoig 14720 cnnei 14779 tgioo 15101 divcnap 15112 ivthdich 15200 lgsdi 15589 bj-indind 16006 |
| Copyright terms: Public domain | W3C validator |