Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylanb | GIF version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanb.1 | ⊢ (𝜑 ↔ 𝜓) |
sylanb.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylanb | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylanb.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 281 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl2anb 289 anabsan 570 2exeu 2111 eqtr2 2189 pm13.181 2422 rmob 3047 disjne 3468 seex 4320 tron 4367 fssres 5373 funbrfvb 5539 funopfvb 5540 fvelrnb 5544 fvco 5566 fvimacnvi 5610 ffvresb 5659 funresdfunsnss 5699 fvtp2g 5705 fvtp2 5708 fnex 5718 funex 5719 1st2nd 6160 dftpos4 6242 nnmsucr 6467 nnmcan 6498 xpmapenlem 6827 fundmfibi 6916 sup3exmid 8873 nzadd 9264 peano5uzti 9320 fnn0ind 9328 uztrn2 9504 irradd 9605 xltnegi 9792 xaddnemnf 9814 xaddnepnf 9815 xaddcom 9818 xnegdi 9825 elioore 9869 uzsubsubfz1 10004 fzo1fzo0n0 10139 elfzonelfzo 10186 qbtwnxr 10214 faclbnd 10675 faclbnd3 10677 dvdsprime 12076 pcgcd 12282 restuni 12966 stoig 12967 cnnei 13026 tgioo 13340 divcnap 13349 lgsdi 13732 bj-indind 13967 |
Copyright terms: Public domain | W3C validator |