![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylanb | GIF version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanb.1 | ⊢ (𝜑 ↔ 𝜓) |
sylanb.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylanb | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylanb.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 283 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2134 eqtr2 2212 pm13.181 2446 rmob 3079 disjne 3501 seex 4367 tron 4414 fssres 5430 funbrfvb 5600 funopfvb 5601 fvelrnb 5605 fvco 5628 fvimacnvi 5673 ffvresb 5722 funresdfunsnss 5762 fvtp2g 5768 fvtp2 5771 fnex 5781 funex 5782 1st2nd 6236 dftpos4 6318 nnmsucr 6543 nnmcan 6574 xpmapenlem 6907 fundmfibi 6999 sup3exmid 8978 nzadd 9372 peano5uzti 9428 fnn0ind 9436 uztrn2 9613 irradd 9714 xltnegi 9904 xaddnemnf 9926 xaddnepnf 9927 xaddcom 9930 xnegdi 9937 elioore 9981 uzsubsubfz1 10117 fzo1fzo0n0 10253 elfzonelfzo 10300 qbtwnxr 10329 faclbnd 10815 faclbnd3 10817 dvdsprime 12263 pcgcd 12470 znf1o 14150 restuni 14351 stoig 14352 cnnei 14411 tgioo 14733 divcnap 14744 ivthdich 14832 lgsdi 15194 bj-indind 15494 |
Copyright terms: Public domain | W3C validator |