| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylanb | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylanb.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylanb | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylanb.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 283 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2145 eqtr2 2223 pm13.181 2457 rmob 3090 disjne 3513 seex 4380 tron 4427 fssres 5445 funbrfvb 5615 funopfvb 5616 fvelrnb 5620 fvco 5643 fvimacnvi 5688 ffvresb 5737 funresdfunsnss 5777 fvtp2g 5783 fvtp2 5786 fnex 5796 funex 5797 1st2nd 6257 dftpos4 6339 nnmsucr 6564 nnmcan 6595 xpmapenlem 6928 fundmfibi 7022 sup3exmid 9012 nzadd 9407 peano5uzti 9463 fnn0ind 9471 uztrn2 9648 irradd 9749 xltnegi 9939 xaddnemnf 9961 xaddnepnf 9962 xaddcom 9965 xnegdi 9972 elioore 10016 uzsubsubfz1 10152 fzo1fzo0n0 10288 elfzonelfzo 10340 qbtwnxr 10381 faclbnd 10867 faclbnd3 10869 dvdsprime 12363 pcgcd 12571 znf1o 14331 restuni 14562 stoig 14563 cnnei 14622 tgioo 14944 divcnap 14955 ivthdich 15043 lgsdi 15432 bj-indind 15732 |
| Copyright terms: Public domain | W3C validator |