| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylanb | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylanb.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylanb | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylanb.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 283 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2137 eqtr2 2215 pm13.181 2449 rmob 3082 disjne 3505 seex 4371 tron 4418 fssres 5436 funbrfvb 5606 funopfvb 5607 fvelrnb 5611 fvco 5634 fvimacnvi 5679 ffvresb 5728 funresdfunsnss 5768 fvtp2g 5774 fvtp2 5777 fnex 5787 funex 5788 1st2nd 6248 dftpos4 6330 nnmsucr 6555 nnmcan 6586 xpmapenlem 6919 fundmfibi 7013 sup3exmid 9003 nzadd 9397 peano5uzti 9453 fnn0ind 9461 uztrn2 9638 irradd 9739 xltnegi 9929 xaddnemnf 9951 xaddnepnf 9952 xaddcom 9955 xnegdi 9962 elioore 10006 uzsubsubfz1 10142 fzo1fzo0n0 10278 elfzonelfzo 10325 qbtwnxr 10366 faclbnd 10852 faclbnd3 10854 dvdsprime 12317 pcgcd 12525 znf1o 14285 restuni 14516 stoig 14517 cnnei 14576 tgioo 14898 divcnap 14909 ivthdich 14997 lgsdi 15386 bj-indind 15686 |
| Copyright terms: Public domain | W3C validator |