| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylanb | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylanb.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylanb | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylanb.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 283 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anb 291 anabsan 575 2exeu 2170 eqtr2 2248 pm13.181 2482 rmob 3122 disjne 3545 seex 4425 tron 4472 fssres 5500 funbrfvb 5673 funopfvb 5674 fvelrnb 5680 fvco 5703 fvimacnvi 5748 ffvresb 5797 funresdfunsnss 5841 fvtp2g 5847 fvtp2 5850 fnex 5860 funex 5861 1st2nd 6325 dftpos4 6407 nnmsucr 6632 nnmcan 6663 xpmapenlem 7006 fundmfibi 7101 sup3exmid 9100 nzadd 9495 peano5uzti 9551 fnn0ind 9559 uztrn2 9736 irradd 9837 xltnegi 10027 xaddnemnf 10049 xaddnepnf 10050 xaddcom 10053 xnegdi 10060 elioore 10104 uzsubsubfz1 10240 fzo1fzo0n0 10379 elfzonelfzo 10431 qbtwnxr 10472 faclbnd 10958 faclbnd3 10960 swrdccat3b 11267 dvdsprime 12639 pcgcd 12847 znf1o 14609 restuni 14840 stoig 14841 cnnei 14900 tgioo 15222 divcnap 15233 ivthdich 15321 lgsdi 15710 bj-indind 16253 |
| Copyright terms: Public domain | W3C validator |