ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfisollemne GIF version

Theorem nninfisollemne 7190
Description: Lemma for nninfisol 7192. A case where 𝑁 is a successor and 𝑁 and 𝑋 are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
Hypotheses
Ref Expression
nninfisol.x (𝜑𝑋 ∈ ℕ)
nninfisol.0 (𝜑 → (𝑋𝑁) = ∅)
nninfisol.n (𝜑𝑁 ∈ ω)
nninfisollemne.s (𝜑𝑁 ≠ ∅)
nninfisollemne.0 (𝜑 → (𝑋 𝑁) = ∅)
Assertion
Ref Expression
nninfisollemne (𝜑DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
Distinct variable group:   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖)   𝑋(𝑖)

Proof of Theorem nninfisollemne
StepHypRef Expression
1 nninfisollemne.0 . . . . 5 (𝜑 → (𝑋 𝑁) = ∅)
21adantr 276 . . . 4 ((𝜑 ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → (𝑋 𝑁) = ∅)
3 simpr 110 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
43fveq1d 5556 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘ 𝑁) = (𝑋 𝑁))
5 eqid 2193 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
6 eleq1 2256 . . . . . . . . . . 11 (𝑖 = 𝑁 → (𝑖𝑁 𝑁𝑁))
76ifbid 3578 . . . . . . . . . 10 (𝑖 = 𝑁 → if(𝑖𝑁, 1o, ∅) = if( 𝑁𝑁, 1o, ∅))
8 nninfisol.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ω)
9 nnpredcl 4655 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ ω)
108, 9syl 14 . . . . . . . . . 10 (𝜑 𝑁 ∈ ω)
11 nninfisollemne.s . . . . . . . . . . . . 13 (𝜑𝑁 ≠ ∅)
12 nnpredlt 4656 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → 𝑁𝑁)
138, 11, 12syl2anc 411 . . . . . . . . . . . 12 (𝜑 𝑁𝑁)
1413iftrued 3564 . . . . . . . . . . 11 (𝜑 → if( 𝑁𝑁, 1o, ∅) = 1o)
15 1lt2o 6495 . . . . . . . . . . 11 1o ∈ 2o
1614, 15eqeltrdi 2284 . . . . . . . . . 10 (𝜑 → if( 𝑁𝑁, 1o, ∅) ∈ 2o)
175, 7, 10, 16fvmptd3 5651 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘ 𝑁) = if( 𝑁𝑁, 1o, ∅))
1817, 14eqtrd 2226 . . . . . . . 8 (𝜑 → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘ 𝑁) = 1o)
1918adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘ 𝑁) = 1o)
204, 19eqtr3d 2228 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → (𝑋 𝑁) = 1o)
21 1n0 6485 . . . . . 6 1o ≠ ∅
22 pm13.181 2446 . . . . . 6 (((𝑋 𝑁) = 1o ∧ 1o ≠ ∅) → (𝑋 𝑁) ≠ ∅)
2320, 21, 22sylancl 413 . . . . 5 ((𝜑 ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → (𝑋 𝑁) ≠ ∅)
2423neneqd 2385 . . . 4 ((𝜑 ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → ¬ (𝑋 𝑁) = ∅)
252, 24pm2.65da 662 . . 3 (𝜑 → ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
2625olcd 735 . 2 (𝜑 → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋))
27 df-dc 836 . 2 (DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋))
2826, 27sylibr 134 1 (𝜑DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  c0 3446  ifcif 3557   cuni 3835  cmpt 4090  ωcom 4622  cfv 5254  1oc1o 6462  2oc2o 6463  xnninf 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-1o 6469  df-2o 6470
This theorem is referenced by:  nninfisol  7192
  Copyright terms: Public domain W3C validator