ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mod2eq1n2dvds GIF version

Theorem mod2eq1n2dvds 11782
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
mod2eq1n2dvds (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))

Proof of Theorem mod2eq1n2dvds
StepHypRef Expression
1 0ne1 8905 . . . . . 6 0 ≠ 1
2 pm13.181 2409 . . . . . 6 (((𝑁 mod 2) = 0 ∧ 0 ≠ 1) → (𝑁 mod 2) ≠ 1)
31, 2mpan2 422 . . . . 5 ((𝑁 mod 2) = 0 → (𝑁 mod 2) ≠ 1)
43neneqd 2348 . . . 4 ((𝑁 mod 2) = 0 → ¬ (𝑁 mod 2) = 1)
54adantl 275 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ¬ (𝑁 mod 2) = 1)
6 mod2eq0even 11781 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁))
76biimpa 294 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → 2 ∥ 𝑁)
87notnotd 620 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ¬ ¬ 2 ∥ 𝑁)
95, 82falsed 692 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
10 simpr 109 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → (𝑁 mod 2) = 1)
11 1ne0 8906 . . . . . . 7 1 ≠ 0
12 pm13.181 2409 . . . . . . 7 (((𝑁 mod 2) = 1 ∧ 1 ≠ 0) → (𝑁 mod 2) ≠ 0)
1311, 12mpan2 422 . . . . . 6 ((𝑁 mod 2) = 1 → (𝑁 mod 2) ≠ 0)
1413neneqd 2348 . . . . 5 ((𝑁 mod 2) = 1 → ¬ (𝑁 mod 2) = 0)
1514adantl 275 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ¬ (𝑁 mod 2) = 0)
166notbid 657 . . . . 5 (𝑁 ∈ ℤ → (¬ (𝑁 mod 2) = 0 ↔ ¬ 2 ∥ 𝑁))
1716adantr 274 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → (¬ (𝑁 mod 2) = 0 ↔ ¬ 2 ∥ 𝑁))
1815, 17mpbid 146 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ¬ 2 ∥ 𝑁)
1910, 182thd 174 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
20 2nn 8999 . . . . 5 2 ∈ ℕ
21 zmodfz 10254 . . . . 5 ((𝑁 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑁 mod 2) ∈ (0...(2 − 1)))
2220, 21mpan2 422 . . . 4 (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ (0...(2 − 1)))
23 2m1e1 8956 . . . . 5 (2 − 1) = 1
2423oveq2i 5837 . . . 4 (0...(2 − 1)) = (0...1)
2522, 24eleqtrdi 2250 . . 3 (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ (0...1))
26 fz01or 10019 . . 3 ((𝑁 mod 2) ∈ (0...1) ↔ ((𝑁 mod 2) = 0 ∨ (𝑁 mod 2) = 1))
2725, 26sylib 121 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ∨ (𝑁 mod 2) = 1))
289, 19, 27mpjaodan 788 1 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1335  wcel 2128  wne 2327   class class class wbr 3967  (class class class)co 5826  0cc0 7734  1c1 7735  cmin 8050  cn 8838  2c2 8889  cz 9172  ...cfz 9918   mod cmo 10230  cdvds 11694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-po 4258  df-iso 4259  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-2 8897  df-n0 9096  df-z 9173  df-uz 9445  df-q 9535  df-rp 9567  df-fz 9919  df-fl 10178  df-mod 10231  df-dvds 11695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator