Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mod2eq1n2dvds GIF version

Theorem mod2eq1n2dvds 11565
 Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
mod2eq1n2dvds (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))

Proof of Theorem mod2eq1n2dvds
StepHypRef Expression
1 0ne1 8780 . . . . . 6 0 ≠ 1
2 pm13.181 2388 . . . . . 6 (((𝑁 mod 2) = 0 ∧ 0 ≠ 1) → (𝑁 mod 2) ≠ 1)
31, 2mpan2 421 . . . . 5 ((𝑁 mod 2) = 0 → (𝑁 mod 2) ≠ 1)
43neneqd 2327 . . . 4 ((𝑁 mod 2) = 0 → ¬ (𝑁 mod 2) = 1)
54adantl 275 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ¬ (𝑁 mod 2) = 1)
6 mod2eq0even 11564 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁))
76biimpa 294 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → 2 ∥ 𝑁)
87notnotd 619 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ¬ ¬ 2 ∥ 𝑁)
95, 82falsed 691 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
10 simpr 109 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → (𝑁 mod 2) = 1)
11 1ne0 8781 . . . . . . 7 1 ≠ 0
12 pm13.181 2388 . . . . . . 7 (((𝑁 mod 2) = 1 ∧ 1 ≠ 0) → (𝑁 mod 2) ≠ 0)
1311, 12mpan2 421 . . . . . 6 ((𝑁 mod 2) = 1 → (𝑁 mod 2) ≠ 0)
1413neneqd 2327 . . . . 5 ((𝑁 mod 2) = 1 → ¬ (𝑁 mod 2) = 0)
1514adantl 275 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ¬ (𝑁 mod 2) = 0)
166notbid 656 . . . . 5 (𝑁 ∈ ℤ → (¬ (𝑁 mod 2) = 0 ↔ ¬ 2 ∥ 𝑁))
1716adantr 274 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → (¬ (𝑁 mod 2) = 0 ↔ ¬ 2 ∥ 𝑁))
1815, 17mpbid 146 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ¬ 2 ∥ 𝑁)
1910, 182thd 174 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
20 2nn 8874 . . . . 5 2 ∈ ℕ
21 zmodfz 10112 . . . . 5 ((𝑁 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑁 mod 2) ∈ (0...(2 − 1)))
2220, 21mpan2 421 . . . 4 (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ (0...(2 − 1)))
23 2m1e1 8831 . . . . 5 (2 − 1) = 1
2423oveq2i 5778 . . . 4 (0...(2 − 1)) = (0...1)
2522, 24eleqtrdi 2230 . . 3 (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ (0...1))
26 fz01or 9884 . . 3 ((𝑁 mod 2) ∈ (0...1) ↔ ((𝑁 mod 2) = 0 ∨ (𝑁 mod 2) = 1))
2725, 26sylib 121 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ∨ (𝑁 mod 2) = 1))
289, 19, 27mpjaodan 787 1 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697   = wceq 1331   ∈ wcel 1480   ≠ wne 2306   class class class wbr 3924  (class class class)co 5767  0cc0 7613  1c1 7614   − cmin 7926  ℕcn 8713  2c2 8764  ℤcz 9047  ...cfz 9783   mod cmo 10088   ∥ cdvds 11482 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fl 10036  df-mod 10089  df-dvds 11483 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator