Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mod2eq1n2dvds | GIF version |
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
mod2eq1n2dvds | ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ne1 8924 | . . . . . 6 ⊢ 0 ≠ 1 | |
2 | pm13.181 2418 | . . . . . 6 ⊢ (((𝑁 mod 2) = 0 ∧ 0 ≠ 1) → (𝑁 mod 2) ≠ 1) | |
3 | 1, 2 | mpan2 422 | . . . . 5 ⊢ ((𝑁 mod 2) = 0 → (𝑁 mod 2) ≠ 1) |
4 | 3 | neneqd 2357 | . . . 4 ⊢ ((𝑁 mod 2) = 0 → ¬ (𝑁 mod 2) = 1) |
5 | 4 | adantl 275 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ¬ (𝑁 mod 2) = 1) |
6 | mod2eq0even 11815 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁)) | |
7 | 6 | biimpa 294 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → 2 ∥ 𝑁) |
8 | 7 | notnotd 620 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ¬ ¬ 2 ∥ 𝑁) |
9 | 5, 8 | 2falsed 692 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
10 | simpr 109 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → (𝑁 mod 2) = 1) | |
11 | 1ne0 8925 | . . . . . . 7 ⊢ 1 ≠ 0 | |
12 | pm13.181 2418 | . . . . . . 7 ⊢ (((𝑁 mod 2) = 1 ∧ 1 ≠ 0) → (𝑁 mod 2) ≠ 0) | |
13 | 11, 12 | mpan2 422 | . . . . . 6 ⊢ ((𝑁 mod 2) = 1 → (𝑁 mod 2) ≠ 0) |
14 | 13 | neneqd 2357 | . . . . 5 ⊢ ((𝑁 mod 2) = 1 → ¬ (𝑁 mod 2) = 0) |
15 | 14 | adantl 275 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ¬ (𝑁 mod 2) = 0) |
16 | 6 | notbid 657 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (¬ (𝑁 mod 2) = 0 ↔ ¬ 2 ∥ 𝑁)) |
17 | 16 | adantr 274 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → (¬ (𝑁 mod 2) = 0 ↔ ¬ 2 ∥ 𝑁)) |
18 | 15, 17 | mpbid 146 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ¬ 2 ∥ 𝑁) |
19 | 10, 18 | 2thd 174 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
20 | 2nn 9018 | . . . . 5 ⊢ 2 ∈ ℕ | |
21 | zmodfz 10281 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑁 mod 2) ∈ (0...(2 − 1))) | |
22 | 20, 21 | mpan2 422 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ (0...(2 − 1))) |
23 | 2m1e1 8975 | . . . . 5 ⊢ (2 − 1) = 1 | |
24 | 23 | oveq2i 5853 | . . . 4 ⊢ (0...(2 − 1)) = (0...1) |
25 | 22, 24 | eleqtrdi 2259 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ (0...1)) |
26 | fz01or 10046 | . . 3 ⊢ ((𝑁 mod 2) ∈ (0...1) ↔ ((𝑁 mod 2) = 0 ∨ (𝑁 mod 2) = 1)) | |
27 | 25, 26 | sylib 121 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ∨ (𝑁 mod 2) = 1)) |
28 | 9, 19, 27 | mpjaodan 788 | 1 ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 class class class wbr 3982 (class class class)co 5842 0cc0 7753 1c1 7754 − cmin 8069 ℕcn 8857 2c2 8908 ℤcz 9191 ...cfz 9944 mod cmo 10257 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fl 10205 df-mod 10258 df-dvds 11728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |