![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mod2eq1n2dvds | GIF version |
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
mod2eq1n2dvds | ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ne1 9051 | . . . . . 6 ⊢ 0 ≠ 1 | |
2 | pm13.181 2446 | . . . . . 6 ⊢ (((𝑁 mod 2) = 0 ∧ 0 ≠ 1) → (𝑁 mod 2) ≠ 1) | |
3 | 1, 2 | mpan2 425 | . . . . 5 ⊢ ((𝑁 mod 2) = 0 → (𝑁 mod 2) ≠ 1) |
4 | 3 | neneqd 2385 | . . . 4 ⊢ ((𝑁 mod 2) = 0 → ¬ (𝑁 mod 2) = 1) |
5 | 4 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ¬ (𝑁 mod 2) = 1) |
6 | mod2eq0even 12022 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁)) | |
7 | 6 | biimpa 296 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → 2 ∥ 𝑁) |
8 | 7 | notnotd 631 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ¬ ¬ 2 ∥ 𝑁) |
9 | 5, 8 | 2falsed 703 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
10 | simpr 110 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → (𝑁 mod 2) = 1) | |
11 | 1ne0 9052 | . . . . . . 7 ⊢ 1 ≠ 0 | |
12 | pm13.181 2446 | . . . . . . 7 ⊢ (((𝑁 mod 2) = 1 ∧ 1 ≠ 0) → (𝑁 mod 2) ≠ 0) | |
13 | 11, 12 | mpan2 425 | . . . . . 6 ⊢ ((𝑁 mod 2) = 1 → (𝑁 mod 2) ≠ 0) |
14 | 13 | neneqd 2385 | . . . . 5 ⊢ ((𝑁 mod 2) = 1 → ¬ (𝑁 mod 2) = 0) |
15 | 14 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ¬ (𝑁 mod 2) = 0) |
16 | 6 | notbid 668 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (¬ (𝑁 mod 2) = 0 ↔ ¬ 2 ∥ 𝑁)) |
17 | 16 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → (¬ (𝑁 mod 2) = 0 ↔ ¬ 2 ∥ 𝑁)) |
18 | 15, 17 | mpbid 147 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ¬ 2 ∥ 𝑁) |
19 | 10, 18 | 2thd 175 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
20 | 2nn 9146 | . . . . 5 ⊢ 2 ∈ ℕ | |
21 | zmodfz 10420 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑁 mod 2) ∈ (0...(2 − 1))) | |
22 | 20, 21 | mpan2 425 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ (0...(2 − 1))) |
23 | 2m1e1 9102 | . . . . 5 ⊢ (2 − 1) = 1 | |
24 | 23 | oveq2i 5930 | . . . 4 ⊢ (0...(2 − 1)) = (0...1) |
25 | 22, 24 | eleqtrdi 2286 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ (0...1)) |
26 | fz01or 10180 | . . 3 ⊢ ((𝑁 mod 2) ∈ (0...1) ↔ ((𝑁 mod 2) = 0 ∨ (𝑁 mod 2) = 1)) | |
27 | 25, 26 | sylib 122 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ∨ (𝑁 mod 2) = 1)) |
28 | 9, 19, 27 | mpjaodan 799 | 1 ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 class class class wbr 4030 (class class class)co 5919 0cc0 7874 1c1 7875 − cmin 8192 ℕcn 8984 2c2 9035 ℤcz 9320 ...cfz 10077 mod cmo 10396 ∥ cdvds 11933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fl 10342 df-mod 10397 df-dvds 11934 |
This theorem is referenced by: 2lgslem3b1 15255 2lgslem3c1 15256 |
Copyright terms: Public domain | W3C validator |