| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mod2eq1n2dvds | GIF version | ||
| Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) |
| Ref | Expression |
|---|---|
| mod2eq1n2dvds | ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ne1 9060 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 2 | pm13.181 2449 | . . . . . 6 ⊢ (((𝑁 mod 2) = 0 ∧ 0 ≠ 1) → (𝑁 mod 2) ≠ 1) | |
| 3 | 1, 2 | mpan2 425 | . . . . 5 ⊢ ((𝑁 mod 2) = 0 → (𝑁 mod 2) ≠ 1) |
| 4 | 3 | neneqd 2388 | . . . 4 ⊢ ((𝑁 mod 2) = 0 → ¬ (𝑁 mod 2) = 1) |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ¬ (𝑁 mod 2) = 1) |
| 6 | mod2eq0even 12046 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁)) | |
| 7 | 6 | biimpa 296 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → 2 ∥ 𝑁) |
| 8 | 7 | notnotd 631 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ¬ ¬ 2 ∥ 𝑁) |
| 9 | 5, 8 | 2falsed 703 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 0) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
| 10 | simpr 110 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → (𝑁 mod 2) = 1) | |
| 11 | 1ne0 9061 | . . . . . . 7 ⊢ 1 ≠ 0 | |
| 12 | pm13.181 2449 | . . . . . . 7 ⊢ (((𝑁 mod 2) = 1 ∧ 1 ≠ 0) → (𝑁 mod 2) ≠ 0) | |
| 13 | 11, 12 | mpan2 425 | . . . . . 6 ⊢ ((𝑁 mod 2) = 1 → (𝑁 mod 2) ≠ 0) |
| 14 | 13 | neneqd 2388 | . . . . 5 ⊢ ((𝑁 mod 2) = 1 → ¬ (𝑁 mod 2) = 0) |
| 15 | 14 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ¬ (𝑁 mod 2) = 0) |
| 16 | 6 | notbid 668 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (¬ (𝑁 mod 2) = 0 ↔ ¬ 2 ∥ 𝑁)) |
| 17 | 16 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → (¬ (𝑁 mod 2) = 0 ↔ ¬ 2 ∥ 𝑁)) |
| 18 | 15, 17 | mpbid 147 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ¬ 2 ∥ 𝑁) |
| 19 | 10, 18 | 2thd 175 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 2) = 1) → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
| 20 | 2nn 9155 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 21 | zmodfz 10441 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑁 mod 2) ∈ (0...(2 − 1))) | |
| 22 | 20, 21 | mpan2 425 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ (0...(2 − 1))) |
| 23 | 2m1e1 9111 | . . . . 5 ⊢ (2 − 1) = 1 | |
| 24 | 23 | oveq2i 5934 | . . . 4 ⊢ (0...(2 − 1)) = (0...1) |
| 25 | 22, 24 | eleqtrdi 2289 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ (0...1)) |
| 26 | fz01or 10189 | . . 3 ⊢ ((𝑁 mod 2) ∈ (0...1) ↔ ((𝑁 mod 2) = 0 ∨ (𝑁 mod 2) = 1)) | |
| 27 | 25, 26 | sylib 122 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ∨ (𝑁 mod 2) = 1)) |
| 28 | 9, 19, 27 | mpjaodan 799 | 1 ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4034 (class class class)co 5923 0cc0 7882 1c1 7883 − cmin 8200 ℕcn 8993 2c2 9044 ℤcz 9329 ...cfz 10086 mod cmo 10417 ∥ cdvds 11955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-2 9052 df-n0 9253 df-z 9330 df-uz 9605 df-q 9697 df-rp 9732 df-fz 10087 df-fl 10363 df-mod 10418 df-dvds 11956 |
| This theorem is referenced by: 2lgslem3b1 15365 2lgslem3c1 15366 |
| Copyright terms: Public domain | W3C validator |