Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.21ddne | GIF version |
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
pm2.21ddne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 2 | neneqd 2357 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
4 | 1, 3 | pm2.21dd 610 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-ne 2337 |
This theorem is referenced by: npnflt 9751 nmnfgt 9754 xlt2add 9816 xrbdtri 11217 divalglemex 11859 divalg 11861 znege1 12110 ennnfonelemex 12347 |
Copyright terms: Public domain | W3C validator |