| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm2.21ddne | GIF version | ||
| Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) | 
| Ref | Expression | 
|---|---|
| pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) | 
| Ref | Expression | 
|---|---|
| pm2.21ddne | ⊢ (𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 2 | neneqd 2388 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | 
| 4 | 1, 3 | pm2.21dd 621 | 1 ⊢ (𝜑 → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-ne 2368 | 
| This theorem is referenced by: npnflt 9890 nmnfgt 9893 xlt2add 9955 xrbdtri 11441 divalglemex 12087 divalg 12089 znege1 12346 ennnfonelemex 12631 | 
| Copyright terms: Public domain | W3C validator |