ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.21ddne GIF version

Theorem pm2.21ddne 2410
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
pm2.21ddne.1 (𝜑𝐴 = 𝐵)
pm2.21ddne.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
pm2.21ddne (𝜑𝜓)

Proof of Theorem pm2.21ddne
StepHypRef Expression
1 pm2.21ddne.1 . 2 (𝜑𝐴 = 𝐵)
2 pm2.21ddne.2 . . 3 (𝜑𝐴𝐵)
32neneqd 2348 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
41, 3pm2.21dd 610 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  wne 2327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-ne 2328
This theorem is referenced by:  npnflt  9701  nmnfgt  9704  xlt2add  9766  xrbdtri  11155  divalglemex  11794  divalg  11796  znege1  12032  ennnfonelemex  12115
  Copyright terms: Public domain W3C validator