![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzprval | GIF version |
Description: Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) |
Ref | Expression |
---|---|
fzprval | ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9343 | . . . . 5 ⊢ 1 ∈ ℤ | |
2 | fzpr 10143 | . . . . 5 ⊢ (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)}) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1...(1 + 1)) = {1, (1 + 1)} |
4 | df-2 9041 | . . . . 5 ⊢ 2 = (1 + 1) | |
5 | 4 | oveq2i 5929 | . . . 4 ⊢ (1...2) = (1...(1 + 1)) |
6 | 4 | preq2i 3699 | . . . 4 ⊢ {1, 2} = {1, (1 + 1)} |
7 | 3, 5, 6 | 3eqtr4i 2224 | . . 3 ⊢ (1...2) = {1, 2} |
8 | 7 | raleqi 2694 | . 2 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵)) |
9 | 1ex 8014 | . . 3 ⊢ 1 ∈ V | |
10 | 2ex 9054 | . . 3 ⊢ 2 ∈ V | |
11 | fveq2 5554 | . . . 4 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
12 | iftrue 3562 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴) | |
13 | 11, 12 | eqeq12d 2208 | . . 3 ⊢ (𝑥 = 1 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴)) |
14 | fveq2 5554 | . . . 4 ⊢ (𝑥 = 2 → (𝐹‘𝑥) = (𝐹‘2)) | |
15 | 1ne2 9188 | . . . . . . . 8 ⊢ 1 ≠ 2 | |
16 | 15 | necomi 2449 | . . . . . . 7 ⊢ 2 ≠ 1 |
17 | pm13.181 2446 | . . . . . . 7 ⊢ ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1) | |
18 | 16, 17 | mpan2 425 | . . . . . 6 ⊢ (𝑥 = 2 → 𝑥 ≠ 1) |
19 | 18 | neneqd 2385 | . . . . 5 ⊢ (𝑥 = 2 → ¬ 𝑥 = 1) |
20 | 19 | iffalsed 3567 | . . . 4 ⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵) |
21 | 14, 20 | eqeq12d 2208 | . . 3 ⊢ (𝑥 = 2 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵)) |
22 | 9, 10, 13, 21 | ralpr 3673 | . 2 ⊢ (∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
23 | 8, 22 | bitri 184 | 1 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 ifcif 3557 {cpr 3619 ‘cfv 5254 (class class class)co 5918 1c1 7873 + caddc 7875 2c2 9033 ℤcz 9317 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |