ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzprval GIF version

Theorem fzprval 10224
Description: Two ways of defining the first two values of a sequence on . (Contributed by NM, 5-Sep-2011.)
Assertion
Ref Expression
fzprval (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fzprval
StepHypRef Expression
1 1z 9418 . . . . 5 1 ∈ ℤ
2 fzpr 10219 . . . . 5 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
31, 2ax-mp 5 . . . 4 (1...(1 + 1)) = {1, (1 + 1)}
4 df-2 9115 . . . . 5 2 = (1 + 1)
54oveq2i 5968 . . . 4 (1...2) = (1...(1 + 1))
64preq2i 3719 . . . 4 {1, 2} = {1, (1 + 1)}
73, 5, 63eqtr4i 2237 . . 3 (1...2) = {1, 2}
87raleqi 2707 . 2 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵))
9 1ex 8087 . . 3 1 ∈ V
10 2ex 9128 . . 3 2 ∈ V
11 fveq2 5589 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
12 iftrue 3580 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴)
1311, 12eqeq12d 2221 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴))
14 fveq2 5589 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
15 1ne2 9263 . . . . . . . 8 1 ≠ 2
1615necomi 2462 . . . . . . 7 2 ≠ 1
17 pm13.181 2459 . . . . . . 7 ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1)
1816, 17mpan2 425 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
1918neneqd 2398 . . . . 5 (𝑥 = 2 → ¬ 𝑥 = 1)
2019iffalsed 3585 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵)
2114, 20eqeq12d 2221 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵))
229, 10, 13, 21ralpr 3693 . 2 (∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
238, 22bitri 184 1 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2177  wne 2377  wral 2485  ifcif 3575  {cpr 3639  cfv 5280  (class class class)co 5957  1c1 7946   + caddc 7948  2c2 9107  cz 9392  ...cfz 10150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator