Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzprval | GIF version |
Description: Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) |
Ref | Expression |
---|---|
fzprval | ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9238 | . . . . 5 ⊢ 1 ∈ ℤ | |
2 | fzpr 10033 | . . . . 5 ⊢ (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)}) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1...(1 + 1)) = {1, (1 + 1)} |
4 | df-2 8937 | . . . . 5 ⊢ 2 = (1 + 1) | |
5 | 4 | oveq2i 5864 | . . . 4 ⊢ (1...2) = (1...(1 + 1)) |
6 | 4 | preq2i 3664 | . . . 4 ⊢ {1, 2} = {1, (1 + 1)} |
7 | 3, 5, 6 | 3eqtr4i 2201 | . . 3 ⊢ (1...2) = {1, 2} |
8 | 7 | raleqi 2669 | . 2 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵)) |
9 | 1ex 7915 | . . 3 ⊢ 1 ∈ V | |
10 | 2ex 8950 | . . 3 ⊢ 2 ∈ V | |
11 | fveq2 5496 | . . . 4 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
12 | iftrue 3531 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴) | |
13 | 11, 12 | eqeq12d 2185 | . . 3 ⊢ (𝑥 = 1 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴)) |
14 | fveq2 5496 | . . . 4 ⊢ (𝑥 = 2 → (𝐹‘𝑥) = (𝐹‘2)) | |
15 | 1ne2 9084 | . . . . . . . 8 ⊢ 1 ≠ 2 | |
16 | 15 | necomi 2425 | . . . . . . 7 ⊢ 2 ≠ 1 |
17 | pm13.181 2422 | . . . . . . 7 ⊢ ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1) | |
18 | 16, 17 | mpan2 423 | . . . . . 6 ⊢ (𝑥 = 2 → 𝑥 ≠ 1) |
19 | 18 | neneqd 2361 | . . . . 5 ⊢ (𝑥 = 2 → ¬ 𝑥 = 1) |
20 | 19 | iffalsed 3536 | . . . 4 ⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵) |
21 | 14, 20 | eqeq12d 2185 | . . 3 ⊢ (𝑥 = 2 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵)) |
22 | 9, 10, 13, 21 | ralpr 3638 | . 2 ⊢ (∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
23 | 8, 22 | bitri 183 | 1 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ∀wral 2448 ifcif 3526 {cpr 3584 ‘cfv 5198 (class class class)co 5853 1c1 7775 + caddc 7777 2c2 8929 ℤcz 9212 ...cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |