ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzprval GIF version

Theorem fzprval 10186
Description: Two ways of defining the first two values of a sequence on . (Contributed by NM, 5-Sep-2011.)
Assertion
Ref Expression
fzprval (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fzprval
StepHypRef Expression
1 1z 9380 . . . . 5 1 ∈ ℤ
2 fzpr 10181 . . . . 5 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
31, 2ax-mp 5 . . . 4 (1...(1 + 1)) = {1, (1 + 1)}
4 df-2 9077 . . . . 5 2 = (1 + 1)
54oveq2i 5945 . . . 4 (1...2) = (1...(1 + 1))
64preq2i 3713 . . . 4 {1, 2} = {1, (1 + 1)}
73, 5, 63eqtr4i 2235 . . 3 (1...2) = {1, 2}
87raleqi 2705 . 2 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵))
9 1ex 8049 . . 3 1 ∈ V
10 2ex 9090 . . 3 2 ∈ V
11 fveq2 5570 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
12 iftrue 3575 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴)
1311, 12eqeq12d 2219 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴))
14 fveq2 5570 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
15 1ne2 9225 . . . . . . . 8 1 ≠ 2
1615necomi 2460 . . . . . . 7 2 ≠ 1
17 pm13.181 2457 . . . . . . 7 ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1)
1816, 17mpan2 425 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
1918neneqd 2396 . . . . 5 (𝑥 = 2 → ¬ 𝑥 = 1)
2019iffalsed 3580 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵)
2114, 20eqeq12d 2219 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵))
229, 10, 13, 21ralpr 3687 . 2 (∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
238, 22bitri 184 1 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1372  wcel 2175  wne 2375  wral 2483  ifcif 3570  {cpr 3633  cfv 5268  (class class class)co 5934  1c1 7908   + caddc 7910  2c2 9069  cz 9354  ...cfz 10112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-2 9077  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator