| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzprval | GIF version | ||
| Description: Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) |
| Ref | Expression |
|---|---|
| fzprval | ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9380 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 2 | fzpr 10181 | . . . . 5 ⊢ (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)}) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1...(1 + 1)) = {1, (1 + 1)} |
| 4 | df-2 9077 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 5 | 4 | oveq2i 5945 | . . . 4 ⊢ (1...2) = (1...(1 + 1)) |
| 6 | 4 | preq2i 3713 | . . . 4 ⊢ {1, 2} = {1, (1 + 1)} |
| 7 | 3, 5, 6 | 3eqtr4i 2235 | . . 3 ⊢ (1...2) = {1, 2} |
| 8 | 7 | raleqi 2705 | . 2 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵)) |
| 9 | 1ex 8049 | . . 3 ⊢ 1 ∈ V | |
| 10 | 2ex 9090 | . . 3 ⊢ 2 ∈ V | |
| 11 | fveq2 5570 | . . . 4 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
| 12 | iftrue 3575 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴) | |
| 13 | 11, 12 | eqeq12d 2219 | . . 3 ⊢ (𝑥 = 1 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴)) |
| 14 | fveq2 5570 | . . . 4 ⊢ (𝑥 = 2 → (𝐹‘𝑥) = (𝐹‘2)) | |
| 15 | 1ne2 9225 | . . . . . . . 8 ⊢ 1 ≠ 2 | |
| 16 | 15 | necomi 2460 | . . . . . . 7 ⊢ 2 ≠ 1 |
| 17 | pm13.181 2457 | . . . . . . 7 ⊢ ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1) | |
| 18 | 16, 17 | mpan2 425 | . . . . . 6 ⊢ (𝑥 = 2 → 𝑥 ≠ 1) |
| 19 | 18 | neneqd 2396 | . . . . 5 ⊢ (𝑥 = 2 → ¬ 𝑥 = 1) |
| 20 | 19 | iffalsed 3580 | . . . 4 ⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵) |
| 21 | 14, 20 | eqeq12d 2219 | . . 3 ⊢ (𝑥 = 2 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵)) |
| 22 | 9, 10, 13, 21 | ralpr 3687 | . 2 ⊢ (∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
| 23 | 8, 22 | bitri 184 | 1 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 ∀wral 2483 ifcif 3570 {cpr 3633 ‘cfv 5268 (class class class)co 5934 1c1 7908 + caddc 7910 2c2 9069 ℤcz 9354 ...cfz 10112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-2 9077 df-n0 9278 df-z 9355 df-uz 9631 df-fz 10113 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |