ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzprval GIF version

Theorem fzprval 9429
Description: Two ways of defining the first two values of a sequence on . (Contributed by NM, 5-Sep-2011.)
Assertion
Ref Expression
fzprval (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fzprval
StepHypRef Expression
1 1z 8712 . . . . 5 1 ∈ ℤ
2 fzpr 9424 . . . . 5 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
31, 2ax-mp 7 . . . 4 (1...(1 + 1)) = {1, (1 + 1)}
4 df-2 8419 . . . . 5 2 = (1 + 1)
54oveq2i 5626 . . . 4 (1...2) = (1...(1 + 1))
64preq2i 3508 . . . 4 {1, 2} = {1, (1 + 1)}
73, 5, 63eqtr4i 2115 . . 3 (1...2) = {1, 2}
87raleqi 2562 . 2 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵))
9 1ex 7430 . . 3 1 ∈ V
10 2ex 8432 . . 3 2 ∈ V
11 fveq2 5270 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
12 iftrue 3384 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴)
1311, 12eqeq12d 2099 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴))
14 fveq2 5270 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
15 1ne2 8559 . . . . . . . 8 1 ≠ 2
1615necomi 2336 . . . . . . 7 2 ≠ 1
17 pm13.181 2333 . . . . . . 7 ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1)
1816, 17mpan2 416 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
1918neneqd 2272 . . . . 5 (𝑥 = 2 → ¬ 𝑥 = 1)
2019iffalsed 3389 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵)
2114, 20eqeq12d 2099 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵))
229, 10, 13, 21ralpr 3482 . 2 (∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
238, 22bitri 182 1 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1287  wcel 1436  wne 2251  wral 2355  ifcif 3379  {cpr 3432  cfv 4983  (class class class)co 5615  1c1 7298   + caddc 7300  2c2 8410  cz 8686  ...cfz 9359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-addcom 7392  ax-addass 7394  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-0id 7400  ax-rnegex 7401  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-br 3823  df-opab 3877  df-mpt 3878  df-id 4096  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-inn 8361  df-2 8419  df-n0 8610  df-z 8687  df-uz 8955  df-fz 9360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator