![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzprval | GIF version |
Description: Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) |
Ref | Expression |
---|---|
fzprval | ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 8978 | . . . . 5 ⊢ 1 ∈ ℤ | |
2 | fzpr 9744 | . . . . 5 ⊢ (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)}) | |
3 | 1, 2 | ax-mp 7 | . . . 4 ⊢ (1...(1 + 1)) = {1, (1 + 1)} |
4 | df-2 8683 | . . . . 5 ⊢ 2 = (1 + 1) | |
5 | 4 | oveq2i 5737 | . . . 4 ⊢ (1...2) = (1...(1 + 1)) |
6 | 4 | preq2i 3568 | . . . 4 ⊢ {1, 2} = {1, (1 + 1)} |
7 | 3, 5, 6 | 3eqtr4i 2143 | . . 3 ⊢ (1...2) = {1, 2} |
8 | 7 | raleqi 2602 | . 2 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵)) |
9 | 1ex 7679 | . . 3 ⊢ 1 ∈ V | |
10 | 2ex 8696 | . . 3 ⊢ 2 ∈ V | |
11 | fveq2 5373 | . . . 4 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
12 | iftrue 3443 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴) | |
13 | 11, 12 | eqeq12d 2127 | . . 3 ⊢ (𝑥 = 1 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴)) |
14 | fveq2 5373 | . . . 4 ⊢ (𝑥 = 2 → (𝐹‘𝑥) = (𝐹‘2)) | |
15 | 1ne2 8824 | . . . . . . . 8 ⊢ 1 ≠ 2 | |
16 | 15 | necomi 2365 | . . . . . . 7 ⊢ 2 ≠ 1 |
17 | pm13.181 2362 | . . . . . . 7 ⊢ ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1) | |
18 | 16, 17 | mpan2 419 | . . . . . 6 ⊢ (𝑥 = 2 → 𝑥 ≠ 1) |
19 | 18 | neneqd 2301 | . . . . 5 ⊢ (𝑥 = 2 → ¬ 𝑥 = 1) |
20 | 19 | iffalsed 3448 | . . . 4 ⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵) |
21 | 14, 20 | eqeq12d 2127 | . . 3 ⊢ (𝑥 = 2 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵)) |
22 | 9, 10, 13, 21 | ralpr 3542 | . 2 ⊢ (∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
23 | 8, 22 | bitri 183 | 1 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1312 ∈ wcel 1461 ≠ wne 2280 ∀wral 2388 ifcif 3438 {cpr 3492 ‘cfv 5079 (class class class)co 5726 1c1 7542 + caddc 7544 2c2 8675 ℤcz 8952 ...cfz 9677 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-addcom 7639 ax-addass 7641 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-0id 7647 ax-rnegex 7648 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-if 3439 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-inn 8625 df-2 8683 df-n0 8876 df-z 8953 df-uz 9223 df-fz 9678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |