| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fzprval | GIF version | ||
| Description: Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| fzprval | ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1z 9352 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 2 | fzpr 10152 | . . . . 5 ⊢ (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)}) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1...(1 + 1)) = {1, (1 + 1)} | 
| 4 | df-2 9049 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 5 | 4 | oveq2i 5933 | . . . 4 ⊢ (1...2) = (1...(1 + 1)) | 
| 6 | 4 | preq2i 3703 | . . . 4 ⊢ {1, 2} = {1, (1 + 1)} | 
| 7 | 3, 5, 6 | 3eqtr4i 2227 | . . 3 ⊢ (1...2) = {1, 2} | 
| 8 | 7 | raleqi 2697 | . 2 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵)) | 
| 9 | 1ex 8021 | . . 3 ⊢ 1 ∈ V | |
| 10 | 2ex 9062 | . . 3 ⊢ 2 ∈ V | |
| 11 | fveq2 5558 | . . . 4 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
| 12 | iftrue 3566 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴) | |
| 13 | 11, 12 | eqeq12d 2211 | . . 3 ⊢ (𝑥 = 1 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴)) | 
| 14 | fveq2 5558 | . . . 4 ⊢ (𝑥 = 2 → (𝐹‘𝑥) = (𝐹‘2)) | |
| 15 | 1ne2 9197 | . . . . . . . 8 ⊢ 1 ≠ 2 | |
| 16 | 15 | necomi 2452 | . . . . . . 7 ⊢ 2 ≠ 1 | 
| 17 | pm13.181 2449 | . . . . . . 7 ⊢ ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1) | |
| 18 | 16, 17 | mpan2 425 | . . . . . 6 ⊢ (𝑥 = 2 → 𝑥 ≠ 1) | 
| 19 | 18 | neneqd 2388 | . . . . 5 ⊢ (𝑥 = 2 → ¬ 𝑥 = 1) | 
| 20 | 19 | iffalsed 3571 | . . . 4 ⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵) | 
| 21 | 14, 20 | eqeq12d 2211 | . . 3 ⊢ (𝑥 = 2 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵)) | 
| 22 | 9, 10, 13, 21 | ralpr 3677 | . 2 ⊢ (∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) | 
| 23 | 8, 22 | bitri 184 | 1 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 ifcif 3561 {cpr 3623 ‘cfv 5258 (class class class)co 5922 1c1 7880 + caddc 7882 2c2 9041 ℤcz 9326 ...cfz 10083 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |