ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzprval GIF version

Theorem fzprval 9749
Description: Two ways of defining the first two values of a sequence on . (Contributed by NM, 5-Sep-2011.)
Assertion
Ref Expression
fzprval (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fzprval
StepHypRef Expression
1 1z 8978 . . . . 5 1 ∈ ℤ
2 fzpr 9744 . . . . 5 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
31, 2ax-mp 7 . . . 4 (1...(1 + 1)) = {1, (1 + 1)}
4 df-2 8683 . . . . 5 2 = (1 + 1)
54oveq2i 5737 . . . 4 (1...2) = (1...(1 + 1))
64preq2i 3568 . . . 4 {1, 2} = {1, (1 + 1)}
73, 5, 63eqtr4i 2143 . . 3 (1...2) = {1, 2}
87raleqi 2602 . 2 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵))
9 1ex 7679 . . 3 1 ∈ V
10 2ex 8696 . . 3 2 ∈ V
11 fveq2 5373 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
12 iftrue 3443 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴)
1311, 12eqeq12d 2127 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴))
14 fveq2 5373 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
15 1ne2 8824 . . . . . . . 8 1 ≠ 2
1615necomi 2365 . . . . . . 7 2 ≠ 1
17 pm13.181 2362 . . . . . . 7 ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1)
1816, 17mpan2 419 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
1918neneqd 2301 . . . . 5 (𝑥 = 2 → ¬ 𝑥 = 1)
2019iffalsed 3448 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵)
2114, 20eqeq12d 2127 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵))
229, 10, 13, 21ralpr 3542 . 2 (∀𝑥 ∈ {1, 2} (𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
238, 22bitri 183 1 (∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1312  wcel 1461  wne 2280  wral 2388  ifcif 3438  {cpr 3492  cfv 5079  (class class class)co 5726  1c1 7542   + caddc 7544  2c2 8675  cz 8952  ...cfz 9677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-2 8683  df-n0 8876  df-z 8953  df-uz 9223  df-fz 9678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator