ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.43a GIF version

Theorem pm2.43a 51
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
pm2.43a.1 (𝜓 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
pm2.43a (𝜓 → (𝜑𝜒))

Proof of Theorem pm2.43a
StepHypRef Expression
1 id 19 . 2 (𝜓𝜓)
2 pm2.43a.1 . 2 (𝜓 → (𝜑 → (𝜓𝜒)))
31, 2mpid 42 1 (𝜓 → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  pm2.43b  52  rspc  2810  rspc2gv  2828  intss1  3822  fvopab3ig  5539  nndi  6426  uzind2  9259  ssfzo12  10105  fiinopn  12362
  Copyright terms: Public domain W3C validator