Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.43a | GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43a.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43a | ⊢ (𝜓 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
2 | pm2.43a.1 | . 2 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpid 42 | 1 ⊢ (𝜓 → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.43b 52 rspc 2828 rspc2gv 2846 intss1 3846 fvopab3ig 5570 nndi 6465 uzind2 9324 ssfzo12 10180 fiinopn 12796 |
Copyright terms: Public domain | W3C validator |