ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvopab3ig GIF version

Theorem fvopab3ig 5607
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
Hypotheses
Ref Expression
fvopab3ig.1 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab3ig.2 (𝑦 = 𝐵 → (𝜓𝜒))
fvopab3ig.3 (𝑥𝐶 → ∃*𝑦𝜑)
fvopab3ig.4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
Assertion
Ref Expression
fvopab3ig ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab3ig
StepHypRef Expression
1 eleq1 2252 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 fvopab3ig.1 . . . . . . . 8 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2anbi12d 473 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐶𝜑) ↔ (𝐴𝐶𝜓)))
4 fvopab3ig.2 . . . . . . . 8 (𝑦 = 𝐵 → (𝜓𝜒))
54anbi2d 464 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
63, 5opelopabg 4283 . . . . . 6 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ (𝐴𝐶𝜒)))
76biimpar 297 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐶𝜒)) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})
87exp43 372 . . . 4 (𝐴𝐶 → (𝐵𝐷 → (𝐴𝐶 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))))
98pm2.43a 51 . . 3 (𝐴𝐶 → (𝐵𝐷 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})))
109imp 124 . 2 ((𝐴𝐶𝐵𝐷) → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
11 fvopab3ig.4 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
1211fveq1i 5532 . . 3 (𝐹𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴)
13 funopab 5267 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐶𝜑))
14 fvopab3ig.3 . . . . . 6 (𝑥𝐶 → ∃*𝑦𝜑)
15 moanimv 2113 . . . . . 6 (∃*𝑦(𝑥𝐶𝜑) ↔ (𝑥𝐶 → ∃*𝑦𝜑))
1614, 15mpbir 146 . . . . 5 ∃*𝑦(𝑥𝐶𝜑)
1713, 16mpgbir 1464 . . . 4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
18 funopfv 5572 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴) = 𝐵))
1917, 18ax-mp 5 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴) = 𝐵)
2012, 19eqtrid 2234 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → (𝐹𝐴) = 𝐵)
2110, 20syl6 33 1 ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  ∃*wmo 2039  wcel 2160  cop 3610  {copab 4078  Fun wfun 5226  cfv 5232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5234  df-fv 5240
This theorem is referenced by:  fvmptg  5609  fvopab6  5629  ov6g  6030
  Copyright terms: Public domain W3C validator