![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvopab3ig | GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.) |
Ref | Expression |
---|---|
fvopab3ig.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
fvopab3ig.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
fvopab3ig.3 | ⊢ (𝑥 ∈ 𝐶 → ∃*𝑦𝜑) |
fvopab3ig.4 | ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} |
Ref | Expression |
---|---|
fvopab3ig | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 → (𝐹‘𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2240 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
2 | fvopab3ig.1 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 473 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝜑) ↔ (𝐴 ∈ 𝐶 ∧ 𝜓))) |
4 | fvopab3ig.2 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | 4 | anbi2d 464 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝜓) ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
6 | 3, 5 | opelopabg 4269 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
7 | 6 | biimpar 297 | . . . . 5 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ (𝐴 ∈ 𝐶 ∧ 𝜒)) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}) |
8 | 7 | exp43 372 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝐴 ∈ 𝐶 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})))) |
9 | 8 | pm2.43a 51 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}))) |
10 | 9 | imp 124 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
11 | fvopab3ig.4 | . . . 4 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} | |
12 | 11 | fveq1i 5517 | . . 3 ⊢ (𝐹‘𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}‘𝐴) |
13 | funopab 5252 | . . . . 5 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐶 ∧ 𝜑)) | |
14 | fvopab3ig.3 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → ∃*𝑦𝜑) | |
15 | moanimv 2101 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐶 ∧ 𝜑) ↔ (𝑥 ∈ 𝐶 → ∃*𝑦𝜑)) | |
16 | 14, 15 | mpbir 146 | . . . . 5 ⊢ ∃*𝑦(𝑥 ∈ 𝐶 ∧ 𝜑) |
17 | 13, 16 | mpgbir 1453 | . . . 4 ⊢ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} |
18 | funopfv 5556 | . . . 4 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}‘𝐴) = 𝐵)) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}‘𝐴) = 𝐵) |
20 | 12, 19 | eqtrid 2222 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → (𝐹‘𝐴) = 𝐵) |
21 | 10, 20 | syl6 33 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 → (𝐹‘𝐴) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃*wmo 2027 ∈ wcel 2148 ⟨cop 3596 {copab 4064 Fun wfun 5211 ‘cfv 5217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 |
This theorem is referenced by: fvmptg 5593 fvopab6 5613 ov6g 6012 |
Copyright terms: Public domain | W3C validator |