| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpid | GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpid.1 | ⊢ (𝜑 → 𝜒) |
| mpid.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpid | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpid.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | mpid.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpdd 41 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mp2d 47 pm2.43a 51 embantd 56 mpan2d 428 ceqsalt 2799 rspcimdv 2879 fvimacnv 5702 riotass2 5933 pr2ne 7307 0mnnnnn0 9334 caucvgre 11336 climcn1 11663 climcn2 11664 gcdaddm 12349 dvdsgcd 12377 coprmgcdb 12454 nprm 12489 pcqmul 12670 grpid 13415 uniopn 14517 metcnp3 15027 cncfco 15107 |
| Copyright terms: Public domain | W3C validator |