ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpid GIF version

Theorem mpid 42
Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.)
Hypotheses
Ref Expression
mpid.1 (𝜑𝜒)
mpid.2 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
mpid (𝜑 → (𝜓𝜃))

Proof of Theorem mpid
StepHypRef Expression
1 mpid.1 . . 3 (𝜑𝜒)
21a1d 22 . 2 (𝜑 → (𝜓𝜒))
3 mpid.2 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
42, 3mpdd 41 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mp2d  47  pm2.43a  51  embantd  56  mpan2d  425  ceqsalt  2751  rspcimdv  2830  fvimacnv  5599  riotass2  5823  pr2ne  7144  0mnnnnn0  9142  caucvgre  10919  climcn1  11245  climcn2  11246  gcdaddm  11913  dvdsgcd  11941  coprmgcdb  12016  nprm  12051  pcqmul  12231  uniopn  12599  metcnp3  13111  cncfco  13178
  Copyright terms: Public domain W3C validator