| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpid | GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpid.1 | ⊢ (𝜑 → 𝜒) |
| mpid.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpid | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpid.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | mpid.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpdd 41 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mp2d 47 pm2.43a 51 embantd 56 mpan2d 428 ceqsalt 2789 rspcimdv 2869 fvimacnv 5680 riotass2 5907 pr2ne 7273 0mnnnnn0 9300 caucvgre 11165 climcn1 11492 climcn2 11493 gcdaddm 12178 dvdsgcd 12206 coprmgcdb 12283 nprm 12318 pcqmul 12499 grpid 13243 uniopn 14345 metcnp3 14855 cncfco 14935 |
| Copyright terms: Public domain | W3C validator |