| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpid | GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpid.1 | ⊢ (𝜑 → 𝜒) |
| mpid.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpid | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpid.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | mpid.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpdd 41 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mp2d 47 pm2.43a 51 embantd 56 mpan2d 428 ceqsalt 2806 rspcimdv 2888 fvimacnv 5723 riotass2 5956 pr2ne 7333 0mnnnnn0 9369 caucvgre 11458 climcn1 11785 climcn2 11786 gcdaddm 12471 dvdsgcd 12499 coprmgcdb 12576 nprm 12611 pcqmul 12792 grpid 13538 uniopn 14640 metcnp3 15150 cncfco 15230 |
| Copyright terms: Public domain | W3C validator |