Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpid | GIF version |
Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
mpid.1 | ⊢ (𝜑 → 𝜒) |
mpid.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpid | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpid.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | mpid.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpdd 41 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2d 47 pm2.43a 51 embantd 56 mpan2d 426 ceqsalt 2756 rspcimdv 2835 fvimacnv 5611 riotass2 5835 pr2ne 7169 0mnnnnn0 9167 caucvgre 10945 climcn1 11271 climcn2 11272 gcdaddm 11939 dvdsgcd 11967 coprmgcdb 12042 nprm 12077 pcqmul 12257 grpid 12742 uniopn 12793 metcnp3 13305 cncfco 13372 |
Copyright terms: Public domain | W3C validator |