ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpid GIF version

Theorem mpid 42
Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.)
Hypotheses
Ref Expression
mpid.1 (𝜑𝜒)
mpid.2 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
mpid (𝜑 → (𝜓𝜃))

Proof of Theorem mpid
StepHypRef Expression
1 mpid.1 . . 3 (𝜑𝜒)
21a1d 22 . 2 (𝜑 → (𝜓𝜒))
3 mpid.2 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
42, 3mpdd 41 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  mp2d  47  pm2.43a  51  embantd  56  mpan2d  426  ceqsalt  2756  rspcimdv  2835  fvimacnv  5611  riotass2  5835  pr2ne  7169  0mnnnnn0  9167  caucvgre  10945  climcn1  11271  climcn2  11272  gcdaddm  11939  dvdsgcd  11967  coprmgcdb  12042  nprm  12077  pcqmul  12257  grpid  12742  uniopn  12793  metcnp3  13305  cncfco  13372
  Copyright terms: Public domain W3C validator