| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpid | GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpid.1 | ⊢ (𝜑 → 𝜒) |
| mpid.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpid | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpid.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | mpid.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpdd 41 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mp2d 47 pm2.43a 51 embantd 56 mpan2d 428 ceqsalt 2826 rspcimdv 2908 fvimacnv 5752 riotass2 5989 pr2ne 7373 0mnnnnn0 9409 caucvgre 11500 climcn1 11827 climcn2 11828 gcdaddm 12513 dvdsgcd 12541 coprmgcdb 12618 nprm 12653 pcqmul 12834 grpid 13580 uniopn 14683 metcnp3 15193 cncfco 15273 |
| Copyright terms: Public domain | W3C validator |