| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpid | GIF version | ||
| Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| mpid.1 | ⊢ (𝜑 → 𝜒) |
| mpid.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mpid | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpid.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | mpid.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpdd 41 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: mp2d 47 pm2.43a 51 embantd 56 mpan2d 428 ceqsalt 2789 rspcimdv 2869 fvimacnv 5680 riotass2 5907 pr2ne 7271 0mnnnnn0 9298 caucvgre 11163 climcn1 11490 climcn2 11491 gcdaddm 12176 dvdsgcd 12204 coprmgcdb 12281 nprm 12316 pcqmul 12497 grpid 13241 uniopn 14321 metcnp3 14831 cncfco 14911 |
| Copyright terms: Public domain | W3C validator |