Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpid | GIF version |
Description: A nested modus ponens deduction. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
mpid.1 | ⊢ (𝜑 → 𝜒) |
mpid.2 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mpid | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpid.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | mpid.2 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpdd 41 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2d 47 pm2.43a 51 embantd 56 mpan2d 425 ceqsalt 2751 rspcimdv 2830 fvimacnv 5599 riotass2 5823 pr2ne 7144 0mnnnnn0 9142 caucvgre 10919 climcn1 11245 climcn2 11246 gcdaddm 11913 dvdsgcd 11941 coprmgcdb 12016 nprm 12051 pcqmul 12231 uniopn 12599 metcnp3 13111 cncfco 13178 |
Copyright terms: Public domain | W3C validator |