ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss1 GIF version

Theorem intss1 3886
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
intss1 (𝐴𝐵 𝐵𝐴)

Proof of Theorem intss1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . 4 𝑥 ∈ V
21elint 3877 . . 3 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
3 eleq1 2256 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
4 eleq2 2257 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
53, 4imbi12d 234 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐵𝑥𝑦) ↔ (𝐴𝐵𝑥𝐴)))
65spcgv 2848 . . . 4 (𝐴𝐵 → (∀𝑦(𝑦𝐵𝑥𝑦) → (𝐴𝐵𝑥𝐴)))
76pm2.43a 51 . . 3 (𝐴𝐵 → (∀𝑦(𝑦𝐵𝑥𝑦) → 𝑥𝐴))
82, 7biimtrid 152 . 2 (𝐴𝐵 → (𝑥 𝐵𝑥𝐴))
98ssrdv 3186 1 (𝐴𝐵 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362   = wceq 1364  wcel 2164  wss 3154   cint 3871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-int 3872
This theorem is referenced by:  intminss  3896  intmin3  3898  intab  3900  int0el  3901  trintssm  4144  inteximm  4179  onnmin  4601  peano5  4631  peano5nnnn  7954  peano5nni  8987  dfuzi  9430  bj-intabssel  15351  bj-intabssel1  15352
  Copyright terms: Public domain W3C validator