ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss1 GIF version

Theorem intss1 3937
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
intss1 (𝐴𝐵 𝐵𝐴)

Proof of Theorem intss1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . 4 𝑥 ∈ V
21elint 3928 . . 3 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
3 eleq1 2292 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
4 eleq2 2293 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
53, 4imbi12d 234 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐵𝑥𝑦) ↔ (𝐴𝐵𝑥𝐴)))
65spcgv 2890 . . . 4 (𝐴𝐵 → (∀𝑦(𝑦𝐵𝑥𝑦) → (𝐴𝐵𝑥𝐴)))
76pm2.43a 51 . . 3 (𝐴𝐵 → (∀𝑦(𝑦𝐵𝑥𝑦) → 𝑥𝐴))
82, 7biimtrid 152 . 2 (𝐴𝐵 → (𝑥 𝐵𝑥𝐴))
98ssrdv 3230 1 (𝐴𝐵 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393   = wceq 1395  wcel 2200  wss 3197   cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-int 3923
This theorem is referenced by:  intminss  3947  intmin3  3949  intab  3951  int0el  3952  trintssm  4197  inteximm  4232  onnmin  4657  peano5  4687  peano5nnnn  8067  peano5nni  9101  dfuzi  9545  bj-intabssel  16083  bj-intabssel1  16084
  Copyright terms: Public domain W3C validator