ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss1 GIF version

Theorem intss1 3839
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
intss1 (𝐴𝐵 𝐵𝐴)

Proof of Theorem intss1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . 4 𝑥 ∈ V
21elint 3830 . . 3 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
3 eleq1 2229 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
4 eleq2 2230 . . . . . 6 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
53, 4imbi12d 233 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐵𝑥𝑦) ↔ (𝐴𝐵𝑥𝐴)))
65spcgv 2813 . . . 4 (𝐴𝐵 → (∀𝑦(𝑦𝐵𝑥𝑦) → (𝐴𝐵𝑥𝐴)))
76pm2.43a 51 . . 3 (𝐴𝐵 → (∀𝑦(𝑦𝐵𝑥𝑦) → 𝑥𝐴))
82, 7syl5bi 151 . 2 (𝐴𝐵 → (𝑥 𝐵𝑥𝐴))
98ssrdv 3148 1 (𝐴𝐵 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341   = wceq 1343  wcel 2136  wss 3116   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-int 3825
This theorem is referenced by:  intminss  3849  intmin3  3851  intab  3853  int0el  3854  trintssm  4096  inteximm  4128  onnmin  4545  peano5  4575  peano5nnnn  7833  peano5nni  8860  dfuzi  9301  bj-intabssel  13670  bj-intabssel1  13671
  Copyright terms: Public domain W3C validator