![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspc | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2460 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | nfcv 2319 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1528 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1572 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
6 | eleq1 2240 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
9 | 2, 5, 8 | spcgf 2820 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
10 | 9 | pm2.43a 51 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
11 | 1, 10 | biimtrid 152 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 Ⅎwnf 1460 ∈ wcel 2148 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2740 |
This theorem is referenced by: rspcv 2838 rspc2 2853 rspc2vd 3126 pofun 4313 omsinds 4622 fmptcof 5684 fliftfuns 5799 qliftfuns 6619 xpf1o 6844 finexdc 6902 ssfirab 6933 iunfidisj 6945 dcfi 6980 cc3 7267 lble 8904 exfzdc 10240 uzsinds 10442 sumeq2 11367 sumfct 11382 sumrbdclem 11385 summodclem3 11388 summodclem2a 11389 zsumdc 11392 fsumgcl 11394 fsum3 11395 fsumf1o 11398 isumss 11399 isumss2 11401 fsum3cvg2 11402 fsumadd 11414 isummulc2 11434 fsum2dlemstep 11442 fisumcom2 11446 fsumshftm 11453 fisum0diag2 11455 fsummulc2 11456 fsum00 11470 fsumabs 11473 fsumrelem 11479 fsumiun 11485 isumshft 11498 mertenslem2 11544 prodeq2 11565 prodrbdclem 11579 prodmodclem3 11583 prodmodclem2a 11584 zproddc 11587 fprodseq 11591 prodfct 11595 fprodf1o 11596 prodssdc 11597 fprodmul 11599 fprodm1s 11609 fprodp1s 11610 fprodabs 11624 fprodap0 11629 fprod2dlemstep 11630 fprodcom2fi 11634 fprodrec 11637 fprodap0f 11644 fprodle 11648 zsupcllemstep 11946 infssuzex 11950 bezoutlemmain 11999 nnwosdc 12040 pcmpt 12341 ctiunctlemudc 12438 iuncld 13618 txcnp 13774 fsumcncntop 14059 bj-nntrans 14706 |
Copyright terms: Public domain | W3C validator |