| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1574 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1618 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2292 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 2885 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 51 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 152 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: rspcv 2903 rspc2 2918 rspc2vd 3193 pofun 4400 omsinds 4711 fmptcof 5795 fliftfuns 5915 qliftfuns 6756 xpf1o 6993 finexdc 7052 ssfirab 7086 opabfi 7088 iunfidisj 7101 dcfi 7136 cc3 7442 lble 9082 exfzdc 10433 zsupcllemstep 10436 infssuzex 10440 uzsinds 10653 sumeq2 11856 sumfct 11871 sumrbdclem 11874 summodclem3 11877 summodclem2a 11878 zsumdc 11881 fsumgcl 11883 fsum3 11884 fsumf1o 11887 isumss 11888 isumss2 11890 fsum3cvg2 11891 fsumadd 11903 isummulc2 11923 fsum2dlemstep 11931 fisumcom2 11935 fsumshftm 11942 fisum0diag2 11944 fsummulc2 11945 fsum00 11959 fsumabs 11962 fsumrelem 11968 fsumiun 11974 isumshft 11987 mertenslem2 12033 prodeq2 12054 prodrbdclem 12068 prodmodclem3 12072 prodmodclem2a 12073 zproddc 12076 fprodseq 12080 prodfct 12084 fprodf1o 12085 prodssdc 12086 fprodmul 12088 fprodm1s 12098 fprodp1s 12099 fprodabs 12113 fprodap0 12118 fprod2dlemstep 12119 fprodcom2fi 12123 fprodrec 12126 fprodap0f 12133 fprodle 12137 bezoutlemmain 12505 nnwosdc 12546 pcmpt 12852 ctiunctlemudc 12994 gsumfzfsumlemm 14536 iuncld 14774 txcnp 14930 fsumcncntop 15226 bj-nntrans 16244 |
| Copyright terms: Public domain | W3C validator |