| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2259 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 2846 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 51 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 152 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 |
| This theorem is referenced by: rspcv 2864 rspc2 2879 rspc2vd 3153 pofun 4347 omsinds 4658 fmptcof 5729 fliftfuns 5845 qliftfuns 6678 xpf1o 6905 finexdc 6963 ssfirab 6997 opabfi 6999 iunfidisj 7012 dcfi 7047 cc3 7335 lble 8974 exfzdc 10316 zsupcllemstep 10319 infssuzex 10323 uzsinds 10536 sumeq2 11524 sumfct 11539 sumrbdclem 11542 summodclem3 11545 summodclem2a 11546 zsumdc 11549 fsumgcl 11551 fsum3 11552 fsumf1o 11555 isumss 11556 isumss2 11558 fsum3cvg2 11559 fsumadd 11571 isummulc2 11591 fsum2dlemstep 11599 fisumcom2 11603 fsumshftm 11610 fisum0diag2 11612 fsummulc2 11613 fsum00 11627 fsumabs 11630 fsumrelem 11636 fsumiun 11642 isumshft 11655 mertenslem2 11701 prodeq2 11722 prodrbdclem 11736 prodmodclem3 11740 prodmodclem2a 11741 zproddc 11744 fprodseq 11748 prodfct 11752 fprodf1o 11753 prodssdc 11754 fprodmul 11756 fprodm1s 11766 fprodp1s 11767 fprodabs 11781 fprodap0 11786 fprod2dlemstep 11787 fprodcom2fi 11791 fprodrec 11794 fprodap0f 11801 fprodle 11805 bezoutlemmain 12165 nnwosdc 12206 pcmpt 12512 ctiunctlemudc 12654 gsumfzfsumlemm 14143 iuncld 14351 txcnp 14507 fsumcncntop 14803 bj-nntrans 15597 |
| Copyright terms: Public domain | W3C validator |