Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1516 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1560 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
6 | eleq1 2229 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | imbi12d 233 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
9 | 2, 5, 8 | spcgf 2808 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
10 | 9 | pm2.43a 51 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
11 | 1, 10 | syl5bi 151 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 = wceq 1343 Ⅎwnf 1448 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 |
This theorem is referenced by: rspcv 2826 rspc2 2841 pofun 4290 omsinds 4599 fmptcof 5652 fliftfuns 5766 qliftfuns 6585 xpf1o 6810 finexdc 6868 ssfirab 6899 iunfidisj 6911 dcfi 6946 cc3 7209 lble 8842 exfzdc 10175 uzsinds 10377 sumeq2 11300 sumfct 11315 sumrbdclem 11318 summodclem3 11321 summodclem2a 11322 zsumdc 11325 fsumgcl 11327 fsum3 11328 fsumf1o 11331 isumss 11332 isumss2 11334 fsum3cvg2 11335 fsumadd 11347 isummulc2 11367 fsum2dlemstep 11375 fisumcom2 11379 fsumshftm 11386 fisum0diag2 11388 fsummulc2 11389 fsum00 11403 fsumabs 11406 fsumrelem 11412 fsumiun 11418 isumshft 11431 mertenslem2 11477 prodeq2 11498 prodrbdclem 11512 prodmodclem3 11516 prodmodclem2a 11517 zproddc 11520 fprodseq 11524 prodfct 11528 fprodf1o 11529 prodssdc 11530 fprodmul 11532 fprodm1s 11542 fprodp1s 11543 fprodabs 11557 fprodap0 11562 fprod2dlemstep 11563 fprodcom2fi 11567 fprodrec 11570 fprodap0f 11577 fprodle 11581 zsupcllemstep 11878 infssuzex 11882 bezoutlemmain 11931 nnwosdc 11972 pcmpt 12273 ctiunctlemudc 12370 iuncld 12765 txcnp 12921 fsumcncntop 13206 bj-nntrans 13843 |
Copyright terms: Public domain | W3C validator |