| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1574 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1618 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2292 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 2885 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 51 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 152 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: rspcv 2903 rspc2 2918 rspc2vd 3193 pofun 4403 omsinds 4714 fmptcof 5804 fliftfuns 5928 qliftfuns 6774 xpf1o 7013 finexdc 7072 ssfirab 7106 opabfi 7108 iunfidisj 7121 dcfi 7156 cc3 7462 lble 9102 exfzdc 10454 zsupcllemstep 10457 infssuzex 10461 uzsinds 10674 sumeq2 11878 sumfct 11893 sumrbdclem 11896 summodclem3 11899 summodclem2a 11900 zsumdc 11903 fsumgcl 11905 fsum3 11906 fsumf1o 11909 isumss 11910 isumss2 11912 fsum3cvg2 11913 fsumadd 11925 isummulc2 11945 fsum2dlemstep 11953 fisumcom2 11957 fsumshftm 11964 fisum0diag2 11966 fsummulc2 11967 fsum00 11981 fsumabs 11984 fsumrelem 11990 fsumiun 11996 isumshft 12009 mertenslem2 12055 prodeq2 12076 prodrbdclem 12090 prodmodclem3 12094 prodmodclem2a 12095 zproddc 12098 fprodseq 12102 prodfct 12106 fprodf1o 12107 prodssdc 12108 fprodmul 12110 fprodm1s 12120 fprodp1s 12121 fprodabs 12135 fprodap0 12140 fprod2dlemstep 12141 fprodcom2fi 12145 fprodrec 12148 fprodap0f 12155 fprodle 12159 bezoutlemmain 12527 nnwosdc 12568 pcmpt 12874 ctiunctlemudc 13016 gsumfzfsumlemm 14559 iuncld 14797 txcnp 14953 fsumcncntop 15249 bj-nntrans 16338 |
| Copyright terms: Public domain | W3C validator |