| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2490 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1552 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1596 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2269 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 2857 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 51 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 152 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2177 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 |
| This theorem is referenced by: rspcv 2875 rspc2 2890 rspc2vd 3164 pofun 4364 omsinds 4675 fmptcof 5757 fliftfuns 5877 qliftfuns 6716 xpf1o 6953 finexdc 7011 ssfirab 7045 opabfi 7047 iunfidisj 7060 dcfi 7095 cc3 7393 lble 9033 exfzdc 10382 zsupcllemstep 10385 infssuzex 10389 uzsinds 10602 sumeq2 11720 sumfct 11735 sumrbdclem 11738 summodclem3 11741 summodclem2a 11742 zsumdc 11745 fsumgcl 11747 fsum3 11748 fsumf1o 11751 isumss 11752 isumss2 11754 fsum3cvg2 11755 fsumadd 11767 isummulc2 11787 fsum2dlemstep 11795 fisumcom2 11799 fsumshftm 11806 fisum0diag2 11808 fsummulc2 11809 fsum00 11823 fsumabs 11826 fsumrelem 11832 fsumiun 11838 isumshft 11851 mertenslem2 11897 prodeq2 11918 prodrbdclem 11932 prodmodclem3 11936 prodmodclem2a 11937 zproddc 11940 fprodseq 11944 prodfct 11948 fprodf1o 11949 prodssdc 11950 fprodmul 11952 fprodm1s 11962 fprodp1s 11963 fprodabs 11977 fprodap0 11982 fprod2dlemstep 11983 fprodcom2fi 11987 fprodrec 11990 fprodap0f 11997 fprodle 12001 bezoutlemmain 12369 nnwosdc 12410 pcmpt 12716 ctiunctlemudc 12858 gsumfzfsumlemm 14399 iuncld 14637 txcnp 14793 fsumcncntop 15089 bj-nntrans 16001 |
| Copyright terms: Public domain | W3C validator |