![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspc | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2477 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1539 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1583 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
6 | eleq1 2256 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
9 | 2, 5, 8 | spcgf 2842 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
10 | 9 | pm2.43a 51 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
11 | 1, 10 | biimtrid 152 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 |
This theorem is referenced by: rspcv 2860 rspc2 2875 rspc2vd 3149 pofun 4343 omsinds 4654 fmptcof 5725 fliftfuns 5841 qliftfuns 6673 xpf1o 6900 finexdc 6958 ssfirab 6990 opabfi 6992 iunfidisj 7005 dcfi 7040 cc3 7328 lble 8966 exfzdc 10307 uzsinds 10515 sumeq2 11502 sumfct 11517 sumrbdclem 11520 summodclem3 11523 summodclem2a 11524 zsumdc 11527 fsumgcl 11529 fsum3 11530 fsumf1o 11533 isumss 11534 isumss2 11536 fsum3cvg2 11537 fsumadd 11549 isummulc2 11569 fsum2dlemstep 11577 fisumcom2 11581 fsumshftm 11588 fisum0diag2 11590 fsummulc2 11591 fsum00 11605 fsumabs 11608 fsumrelem 11614 fsumiun 11620 isumshft 11633 mertenslem2 11679 prodeq2 11700 prodrbdclem 11714 prodmodclem3 11718 prodmodclem2a 11719 zproddc 11722 fprodseq 11726 prodfct 11730 fprodf1o 11731 prodssdc 11732 fprodmul 11734 fprodm1s 11744 fprodp1s 11745 fprodabs 11759 fprodap0 11764 fprod2dlemstep 11765 fprodcom2fi 11769 fprodrec 11772 fprodap0f 11779 fprodle 11783 zsupcllemstep 12082 infssuzex 12086 bezoutlemmain 12135 nnwosdc 12176 pcmpt 12481 ctiunctlemudc 12594 gsumfzfsumlemm 14075 iuncld 14283 txcnp 14439 fsumcncntop 14724 bj-nntrans 15443 |
Copyright terms: Public domain | W3C validator |