Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2453 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | nfcv 2312 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1521 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1565 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
6 | eleq1 2233 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | imbi12d 233 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
9 | 2, 5, 8 | spcgf 2812 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
10 | 9 | pm2.43a 51 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
11 | 1, 10 | syl5bi 151 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 = wceq 1348 Ⅎwnf 1453 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 |
This theorem is referenced by: rspcv 2830 rspc2 2845 rspc2vd 3117 pofun 4297 omsinds 4606 fmptcof 5663 fliftfuns 5777 qliftfuns 6597 xpf1o 6822 finexdc 6880 ssfirab 6911 iunfidisj 6923 dcfi 6958 cc3 7230 lble 8863 exfzdc 10196 uzsinds 10398 sumeq2 11322 sumfct 11337 sumrbdclem 11340 summodclem3 11343 summodclem2a 11344 zsumdc 11347 fsumgcl 11349 fsum3 11350 fsumf1o 11353 isumss 11354 isumss2 11356 fsum3cvg2 11357 fsumadd 11369 isummulc2 11389 fsum2dlemstep 11397 fisumcom2 11401 fsumshftm 11408 fisum0diag2 11410 fsummulc2 11411 fsum00 11425 fsumabs 11428 fsumrelem 11434 fsumiun 11440 isumshft 11453 mertenslem2 11499 prodeq2 11520 prodrbdclem 11534 prodmodclem3 11538 prodmodclem2a 11539 zproddc 11542 fprodseq 11546 prodfct 11550 fprodf1o 11551 prodssdc 11552 fprodmul 11554 fprodm1s 11564 fprodp1s 11565 fprodabs 11579 fprodap0 11584 fprod2dlemstep 11585 fprodcom2fi 11589 fprodrec 11592 fprodap0f 11599 fprodle 11603 zsupcllemstep 11900 infssuzex 11904 bezoutlemmain 11953 nnwosdc 11994 pcmpt 12295 ctiunctlemudc 12392 iuncld 12909 txcnp 13065 fsumcncntop 13350 bj-nntrans 13986 |
Copyright terms: Public domain | W3C validator |