| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2259 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 2846 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 51 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 152 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 |
| This theorem is referenced by: rspcv 2864 rspc2 2879 rspc2vd 3153 pofun 4348 omsinds 4659 fmptcof 5732 fliftfuns 5848 qliftfuns 6687 xpf1o 6914 finexdc 6972 ssfirab 7006 opabfi 7008 iunfidisj 7021 dcfi 7056 cc3 7353 lble 8993 exfzdc 10335 zsupcllemstep 10338 infssuzex 10342 uzsinds 10555 sumeq2 11543 sumfct 11558 sumrbdclem 11561 summodclem3 11564 summodclem2a 11565 zsumdc 11568 fsumgcl 11570 fsum3 11571 fsumf1o 11574 isumss 11575 isumss2 11577 fsum3cvg2 11578 fsumadd 11590 isummulc2 11610 fsum2dlemstep 11618 fisumcom2 11622 fsumshftm 11629 fisum0diag2 11631 fsummulc2 11632 fsum00 11646 fsumabs 11649 fsumrelem 11655 fsumiun 11661 isumshft 11674 mertenslem2 11720 prodeq2 11741 prodrbdclem 11755 prodmodclem3 11759 prodmodclem2a 11760 zproddc 11763 fprodseq 11767 prodfct 11771 fprodf1o 11772 prodssdc 11773 fprodmul 11775 fprodm1s 11785 fprodp1s 11786 fprodabs 11800 fprodap0 11805 fprod2dlemstep 11806 fprodcom2fi 11810 fprodrec 11813 fprodap0f 11820 fprodle 11824 bezoutlemmain 12192 nnwosdc 12233 pcmpt 12539 ctiunctlemudc 12681 gsumfzfsumlemm 14221 iuncld 14459 txcnp 14615 fsumcncntop 14911 bj-nntrans 15705 |
| Copyright terms: Public domain | W3C validator |