ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2gv GIF version

Theorem rspc2gv 2755
Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021.)
Hypothesis
Ref Expression
rspc2gv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
rspc2gv ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑉𝑦𝑊 𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rspc2gv
StepHypRef Expression
1 df-ral 2380 . 2 (∀𝑥𝑉𝑦𝑊 𝜑 ↔ ∀𝑥(𝑥𝑉 → ∀𝑦𝑊 𝜑))
2 df-ral 2380 . . . . 5 (∀𝑦𝑊 𝜑 ↔ ∀𝑦(𝑦𝑊𝜑))
32imbi2i 225 . . . 4 ((𝑥𝑉 → ∀𝑦𝑊 𝜑) ↔ (𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)))
43albii 1414 . . 3 (∀𝑥(𝑥𝑉 → ∀𝑦𝑊 𝜑) ↔ ∀𝑥(𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)))
5 19.21v 1812 . . . . . 6 (∀𝑦(𝑥𝑉 → (𝑦𝑊𝜑)) ↔ (𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)))
65bicomi 131 . . . . 5 ((𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)) ↔ ∀𝑦(𝑥𝑉 → (𝑦𝑊𝜑)))
76albii 1414 . . . 4 (∀𝑥(𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)) ↔ ∀𝑥𝑦(𝑥𝑉 → (𝑦𝑊𝜑)))
8 impexp 261 . . . . . . 7 (((𝑥𝑉𝑦𝑊) → 𝜑) ↔ (𝑥𝑉 → (𝑦𝑊𝜑)))
9 eleq1 2162 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝑉𝐴𝑉))
10 eleq1 2162 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝑊𝐵𝑊))
119, 10bi2anan9 576 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑉𝑦𝑊) ↔ (𝐴𝑉𝐵𝑊)))
12 rspc2gv.1 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
1311, 12imbi12d 233 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑥𝑉𝑦𝑊) → 𝜑) ↔ ((𝐴𝑉𝐵𝑊) → 𝜓)))
148, 13syl5bbr 193 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑉 → (𝑦𝑊𝜑)) ↔ ((𝐴𝑉𝐵𝑊) → 𝜓)))
1514spc2gv 2731 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦(𝑥𝑉 → (𝑦𝑊𝜑)) → ((𝐴𝑉𝐵𝑊) → 𝜓)))
1615pm2.43a 51 . . . 4 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦(𝑥𝑉 → (𝑦𝑊𝜑)) → 𝜓))
177, 16syl5bi 151 . . 3 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥𝑉 → ∀𝑦(𝑦𝑊𝜑)) → 𝜓))
184, 17syl5bi 151 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥𝑉 → ∀𝑦𝑊 𝜑) → 𝜓))
191, 18syl5bi 151 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑉𝑦𝑊 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1297   = wceq 1299  wcel 1448  wral 2375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-ral 2380  df-v 2643
This theorem is referenced by:  difinfsnlem  6899  difinfsn  6900  seqvalcd  10073  seqovcd  10077  qtopbasss  12443
  Copyright terms: Public domain W3C validator