Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzind2 | GIF version |
Description: Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.) |
Ref | Expression |
---|---|
uzind2.1 | ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) |
uzind2.2 | ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
uzind2.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
uzind2.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
uzind2.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) |
uzind2.6 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
uzind2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltp1le 9266 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
2 | peano2z 9248 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
3 | uzind2.1 | . . . . . . . . . 10 ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) | |
4 | 3 | imbi2d 229 | . . . . . . . . 9 ⊢ (𝑗 = (𝑀 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜓))) |
5 | uzind2.2 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | |
6 | 5 | imbi2d 229 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜒))) |
7 | uzind2.3 | . . . . . . . . . 10 ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
8 | 7 | imbi2d 229 | . . . . . . . . 9 ⊢ (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜃))) |
9 | uzind2.4 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
10 | 9 | imbi2d 229 | . . . . . . . . 9 ⊢ (𝑗 = 𝑁 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜏))) |
11 | uzind2.5 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
12 | 11 | a1i 9 | . . . . . . . . 9 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑀 ∈ ℤ → 𝜓)) |
13 | zltp1le 9266 | . . . . . . . . . . . . . . 15 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘)) | |
14 | uzind2.6 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) | |
15 | 14 | 3expia 1200 | . . . . . . . . . . . . . . 15 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 → (𝜒 → 𝜃))) |
16 | 13, 15 | sylbird 169 | . . . . . . . . . . . . . 14 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝜒 → 𝜃))) |
17 | 16 | ex 114 | . . . . . . . . . . . . 13 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝜒 → 𝜃)))) |
18 | 17 | com3l 81 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑀 ∈ ℤ → (𝜒 → 𝜃)))) |
19 | 18 | imp 123 | . . . . . . . . . . 11 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒 → 𝜃))) |
20 | 19 | 3adant1 1010 | . . . . . . . . . 10 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒 → 𝜃))) |
21 | 20 | a2d 26 | . . . . . . . . 9 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → ((𝑀 ∈ ℤ → 𝜒) → (𝑀 ∈ ℤ → 𝜃))) |
22 | 4, 6, 8, 10, 12, 21 | uzind 9323 | . . . . . . . 8 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℤ → 𝜏)) |
23 | 22 | 3exp 1197 | . . . . . . 7 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏)))) |
24 | 2, 23 | syl 14 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏)))) |
25 | 24 | com34 83 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → 𝜏)))) |
26 | 25 | pm2.43a 51 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → 𝜏))) |
27 | 26 | imp 123 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 → 𝜏)) |
28 | 1, 27 | sylbid 149 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → 𝜏)) |
29 | 28 | 3impia 1195 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 1c1 7775 + caddc 7777 < clt 7954 ≤ cle 7955 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |