| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzind2 | GIF version | ||
| Description: Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.) |
| Ref | Expression |
|---|---|
| uzind2.1 | ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) |
| uzind2.2 | ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
| uzind2.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
| uzind2.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
| uzind2.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) |
| uzind2.6 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| uzind2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zltp1le 9427 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
| 2 | peano2z 9408 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
| 3 | uzind2.1 | . . . . . . . . . 10 ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | imbi2d 230 | . . . . . . . . 9 ⊢ (𝑗 = (𝑀 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜓))) |
| 5 | uzind2.2 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | |
| 6 | 5 | imbi2d 230 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜒))) |
| 7 | uzind2.3 | . . . . . . . . . 10 ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
| 8 | 7 | imbi2d 230 | . . . . . . . . 9 ⊢ (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜃))) |
| 9 | uzind2.4 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
| 10 | 9 | imbi2d 230 | . . . . . . . . 9 ⊢ (𝑗 = 𝑁 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜏))) |
| 11 | uzind2.5 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
| 12 | 11 | a1i 9 | . . . . . . . . 9 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑀 ∈ ℤ → 𝜓)) |
| 13 | zltp1le 9427 | . . . . . . . . . . . . . . 15 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘)) | |
| 14 | uzind2.6 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) | |
| 15 | 14 | 3expia 1208 | . . . . . . . . . . . . . . 15 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 → (𝜒 → 𝜃))) |
| 16 | 13, 15 | sylbird 170 | . . . . . . . . . . . . . 14 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝜒 → 𝜃))) |
| 17 | 16 | ex 115 | . . . . . . . . . . . . 13 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝜒 → 𝜃)))) |
| 18 | 17 | com3l 81 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑀 ∈ ℤ → (𝜒 → 𝜃)))) |
| 19 | 18 | imp 124 | . . . . . . . . . . 11 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒 → 𝜃))) |
| 20 | 19 | 3adant1 1018 | . . . . . . . . . 10 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒 → 𝜃))) |
| 21 | 20 | a2d 26 | . . . . . . . . 9 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → ((𝑀 ∈ ℤ → 𝜒) → (𝑀 ∈ ℤ → 𝜃))) |
| 22 | 4, 6, 8, 10, 12, 21 | uzind 9484 | . . . . . . . 8 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℤ → 𝜏)) |
| 23 | 22 | 3exp 1205 | . . . . . . 7 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏)))) |
| 24 | 2, 23 | syl 14 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏)))) |
| 25 | 24 | com34 83 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → 𝜏)))) |
| 26 | 25 | pm2.43a 51 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → 𝜏))) |
| 27 | 26 | imp 124 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 → 𝜏)) |
| 28 | 1, 27 | sylbid 150 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → 𝜏)) |
| 29 | 28 | 3impia 1203 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 (class class class)co 5944 1c1 7926 + caddc 7928 < clt 8107 ≤ cle 8108 ℤcz 9372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |