| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzind2 | GIF version | ||
| Description: Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.) |
| Ref | Expression |
|---|---|
| uzind2.1 | ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) |
| uzind2.2 | ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
| uzind2.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
| uzind2.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
| uzind2.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) |
| uzind2.6 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| uzind2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zltp1le 9501 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
| 2 | peano2z 9482 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
| 3 | uzind2.1 | . . . . . . . . . 10 ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | imbi2d 230 | . . . . . . . . 9 ⊢ (𝑗 = (𝑀 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜓))) |
| 5 | uzind2.2 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | |
| 6 | 5 | imbi2d 230 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜒))) |
| 7 | uzind2.3 | . . . . . . . . . 10 ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
| 8 | 7 | imbi2d 230 | . . . . . . . . 9 ⊢ (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜃))) |
| 9 | uzind2.4 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
| 10 | 9 | imbi2d 230 | . . . . . . . . 9 ⊢ (𝑗 = 𝑁 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜏))) |
| 11 | uzind2.5 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
| 12 | 11 | a1i 9 | . . . . . . . . 9 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑀 ∈ ℤ → 𝜓)) |
| 13 | zltp1le 9501 | . . . . . . . . . . . . . . 15 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘)) | |
| 14 | uzind2.6 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) | |
| 15 | 14 | 3expia 1229 | . . . . . . . . . . . . . . 15 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 → (𝜒 → 𝜃))) |
| 16 | 13, 15 | sylbird 170 | . . . . . . . . . . . . . 14 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝜒 → 𝜃))) |
| 17 | 16 | ex 115 | . . . . . . . . . . . . 13 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝜒 → 𝜃)))) |
| 18 | 17 | com3l 81 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑀 ∈ ℤ → (𝜒 → 𝜃)))) |
| 19 | 18 | imp 124 | . . . . . . . . . . 11 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒 → 𝜃))) |
| 20 | 19 | 3adant1 1039 | . . . . . . . . . 10 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒 → 𝜃))) |
| 21 | 20 | a2d 26 | . . . . . . . . 9 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → ((𝑀 ∈ ℤ → 𝜒) → (𝑀 ∈ ℤ → 𝜃))) |
| 22 | 4, 6, 8, 10, 12, 21 | uzind 9558 | . . . . . . . 8 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℤ → 𝜏)) |
| 23 | 22 | 3exp 1226 | . . . . . . 7 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏)))) |
| 24 | 2, 23 | syl 14 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏)))) |
| 25 | 24 | com34 83 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → 𝜏)))) |
| 26 | 25 | pm2.43a 51 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → 𝜏))) |
| 27 | 26 | imp 124 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 → 𝜏)) |
| 28 | 1, 27 | sylbid 150 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → 𝜏)) |
| 29 | 28 | 3impia 1224 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6001 1c1 8000 + caddc 8002 < clt 8181 ≤ cle 8182 ℤcz 9446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |