ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.24 GIF version

Theorem pm4.24 393
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 14-Mar-2014.)
Assertion
Ref Expression
pm4.24 (𝜑 ↔ (𝜑𝜑))

Proof of Theorem pm4.24
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
21pm4.71i 389 1 (𝜑 ↔ (𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anidm  394  anabsan  565  sbidm  1839  euind  2913  reuind  2931  xrmaxiflemcom  11190
  Copyright terms: Public domain W3C validator