ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngunit GIF version

Theorem crngunit 14069
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
crngunit.1 𝑈 = (Unit‘𝑅)
crngunit.2 1 = (1r𝑅)
crngunit.3 = (∥r𝑅)
Assertion
Ref Expression
crngunit (𝑅 ∈ CRing → (𝑋𝑈𝑋 1 ))

Proof of Theorem crngunit
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 crngunit.1 . . . . 5 𝑈 = (Unit‘𝑅)
21a1i 9 . . . 4 (𝑅 ∈ CRing → 𝑈 = (Unit‘𝑅))
3 crngunit.2 . . . . 5 1 = (1r𝑅)
43a1i 9 . . . 4 (𝑅 ∈ CRing → 1 = (1r𝑅))
5 crngunit.3 . . . . 5 = (∥r𝑅)
65a1i 9 . . . 4 (𝑅 ∈ CRing → = (∥r𝑅))
7 eqidd 2230 . . . 4 (𝑅 ∈ CRing → (oppr𝑅) = (oppr𝑅))
8 eqidd 2230 . . . 4 (𝑅 ∈ CRing → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
9 crngring 13966 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
10 ringsrg 14005 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
119, 10syl 14 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ SRing)
122, 4, 6, 7, 8, 11isunitd 14064 . . 3 (𝑅 ∈ CRing → (𝑋𝑈 ↔ (𝑋 1𝑋(∥r‘(oppr𝑅)) 1 )))
13 eqid 2229 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2229 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
15 eqid 2229 . . . . . . . . . . . 12 (oppr𝑅) = (oppr𝑅)
16 eqid 2229 . . . . . . . . . . . 12 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
1713, 14, 15, 16crngoppr 14030 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑋) = (𝑦(.r‘(oppr𝑅))𝑋))
18173expa 1227 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑋) = (𝑦(.r‘(oppr𝑅))𝑋))
1918eqcomd 2235 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr𝑅))𝑋) = (𝑦(.r𝑅)𝑋))
2019an32s 568 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr𝑅))𝑋) = (𝑦(.r𝑅)𝑋))
2120eqeq1d 2238 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r‘(oppr𝑅))𝑋) = 1 ↔ (𝑦(.r𝑅)𝑋) = 1 ))
2221rexbidva 2527 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑅))𝑋) = 1 ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑋) = 1 ))
2322pm5.32da 452 . . . . 5 (𝑅 ∈ CRing → ((𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑋) = 1 )))
2415, 13opprbasg 14033 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘(oppr𝑅)))
2515opprring 14037 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
26 ringsrg 14005 . . . . . . 7 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
279, 25, 263syl 17 . . . . . 6 (𝑅 ∈ CRing → (oppr𝑅) ∈ SRing)
28 eqidd 2230 . . . . . 6 (𝑅 ∈ CRing → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
2924, 8, 27, 28dvdsrd 14052 . . . . 5 (𝑅 ∈ CRing → (𝑋(∥r‘(oppr𝑅)) 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑅))𝑋) = 1 )))
30 eqidd 2230 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅))
31 eqidd 2230 . . . . . 6 (𝑅 ∈ CRing → (.r𝑅) = (.r𝑅))
3230, 6, 11, 31dvdsrd 14052 . . . . 5 (𝑅 ∈ CRing → (𝑋 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑋) = 1 )))
3323, 29, 323bitr4d 220 . . . 4 (𝑅 ∈ CRing → (𝑋(∥r‘(oppr𝑅)) 1𝑋 1 ))
3433anbi2d 464 . . 3 (𝑅 ∈ CRing → ((𝑋 1𝑋(∥r‘(oppr𝑅)) 1 ) ↔ (𝑋 1𝑋 1 )))
3512, 34bitrd 188 . 2 (𝑅 ∈ CRing → (𝑋𝑈 ↔ (𝑋 1𝑋 1 )))
36 pm4.24 395 . 2 (𝑋 1 ↔ (𝑋 1𝑋 1 ))
3735, 36bitr4di 198 1 (𝑅 ∈ CRing → (𝑋𝑈𝑋 1 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4082  cfv 5317  (class class class)co 6000  Basecbs 13027  .rcmulr 13106  1rcur 13917  SRingcsrg 13921  Ringcrg 13954  CRingccrg 13955  opprcoppr 14025  rcdsr 14044  Unitcui 14045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-cring 13957  df-oppr 14026  df-dvdsr 14047  df-unit 14048
This theorem is referenced by:  dvdsunit  14070  cnfldui  14547  znunit  14617
  Copyright terms: Public domain W3C validator