ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngunit GIF version

Theorem crngunit 13948
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
crngunit.1 𝑈 = (Unit‘𝑅)
crngunit.2 1 = (1r𝑅)
crngunit.3 = (∥r𝑅)
Assertion
Ref Expression
crngunit (𝑅 ∈ CRing → (𝑋𝑈𝑋 1 ))

Proof of Theorem crngunit
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 crngunit.1 . . . . 5 𝑈 = (Unit‘𝑅)
21a1i 9 . . . 4 (𝑅 ∈ CRing → 𝑈 = (Unit‘𝑅))
3 crngunit.2 . . . . 5 1 = (1r𝑅)
43a1i 9 . . . 4 (𝑅 ∈ CRing → 1 = (1r𝑅))
5 crngunit.3 . . . . 5 = (∥r𝑅)
65a1i 9 . . . 4 (𝑅 ∈ CRing → = (∥r𝑅))
7 eqidd 2207 . . . 4 (𝑅 ∈ CRing → (oppr𝑅) = (oppr𝑅))
8 eqidd 2207 . . . 4 (𝑅 ∈ CRing → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
9 crngring 13845 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
10 ringsrg 13884 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
119, 10syl 14 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ SRing)
122, 4, 6, 7, 8, 11isunitd 13943 . . 3 (𝑅 ∈ CRing → (𝑋𝑈 ↔ (𝑋 1𝑋(∥r‘(oppr𝑅)) 1 )))
13 eqid 2206 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2206 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
15 eqid 2206 . . . . . . . . . . . 12 (oppr𝑅) = (oppr𝑅)
16 eqid 2206 . . . . . . . . . . . 12 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
1713, 14, 15, 16crngoppr 13909 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑋) = (𝑦(.r‘(oppr𝑅))𝑋))
18173expa 1206 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑋) = (𝑦(.r‘(oppr𝑅))𝑋))
1918eqcomd 2212 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr𝑅))𝑋) = (𝑦(.r𝑅)𝑋))
2019an32s 568 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr𝑅))𝑋) = (𝑦(.r𝑅)𝑋))
2120eqeq1d 2215 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r‘(oppr𝑅))𝑋) = 1 ↔ (𝑦(.r𝑅)𝑋) = 1 ))
2221rexbidva 2504 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑅))𝑋) = 1 ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑋) = 1 ))
2322pm5.32da 452 . . . . 5 (𝑅 ∈ CRing → ((𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑋) = 1 )))
2415, 13opprbasg 13912 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘(oppr𝑅)))
2515opprring 13916 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
26 ringsrg 13884 . . . . . . 7 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
279, 25, 263syl 17 . . . . . 6 (𝑅 ∈ CRing → (oppr𝑅) ∈ SRing)
28 eqidd 2207 . . . . . 6 (𝑅 ∈ CRing → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
2924, 8, 27, 28dvdsrd 13931 . . . . 5 (𝑅 ∈ CRing → (𝑋(∥r‘(oppr𝑅)) 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑅))𝑋) = 1 )))
30 eqidd 2207 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅))
31 eqidd 2207 . . . . . 6 (𝑅 ∈ CRing → (.r𝑅) = (.r𝑅))
3230, 6, 11, 31dvdsrd 13931 . . . . 5 (𝑅 ∈ CRing → (𝑋 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑋) = 1 )))
3323, 29, 323bitr4d 220 . . . 4 (𝑅 ∈ CRing → (𝑋(∥r‘(oppr𝑅)) 1𝑋 1 ))
3433anbi2d 464 . . 3 (𝑅 ∈ CRing → ((𝑋 1𝑋(∥r‘(oppr𝑅)) 1 ) ↔ (𝑋 1𝑋 1 )))
3512, 34bitrd 188 . 2 (𝑅 ∈ CRing → (𝑋𝑈 ↔ (𝑋 1𝑋 1 )))
36 pm4.24 395 . 2 (𝑋 1 ↔ (𝑋 1𝑋 1 ))
3735, 36bitr4di 198 1 (𝑅 ∈ CRing → (𝑋𝑈𝑋 1 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wrex 2486   class class class wbr 4051  cfv 5280  (class class class)co 5957  Basecbs 12907  .rcmulr 12985  1rcur 13796  SRingcsrg 13800  Ringcrg 13833  CRingccrg 13834  opprcoppr 13904  rcdsr 13923  Unitcui 13924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-tpos 6344  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-plusg 12997  df-mulr 12998  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-cmn 13697  df-abl 13698  df-mgp 13758  df-ur 13797  df-srg 13801  df-ring 13835  df-cring 13836  df-oppr 13905  df-dvdsr 13926  df-unit 13927
This theorem is referenced by:  dvdsunit  13949  cnfldui  14426  znunit  14496
  Copyright terms: Public domain W3C validator