ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngunit GIF version

Theorem crngunit 13791
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
crngunit.1 𝑈 = (Unit‘𝑅)
crngunit.2 1 = (1r𝑅)
crngunit.3 = (∥r𝑅)
Assertion
Ref Expression
crngunit (𝑅 ∈ CRing → (𝑋𝑈𝑋 1 ))

Proof of Theorem crngunit
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 crngunit.1 . . . . 5 𝑈 = (Unit‘𝑅)
21a1i 9 . . . 4 (𝑅 ∈ CRing → 𝑈 = (Unit‘𝑅))
3 crngunit.2 . . . . 5 1 = (1r𝑅)
43a1i 9 . . . 4 (𝑅 ∈ CRing → 1 = (1r𝑅))
5 crngunit.3 . . . . 5 = (∥r𝑅)
65a1i 9 . . . 4 (𝑅 ∈ CRing → = (∥r𝑅))
7 eqidd 2205 . . . 4 (𝑅 ∈ CRing → (oppr𝑅) = (oppr𝑅))
8 eqidd 2205 . . . 4 (𝑅 ∈ CRing → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
9 crngring 13688 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
10 ringsrg 13727 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
119, 10syl 14 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ SRing)
122, 4, 6, 7, 8, 11isunitd 13786 . . 3 (𝑅 ∈ CRing → (𝑋𝑈 ↔ (𝑋 1𝑋(∥r‘(oppr𝑅)) 1 )))
13 eqid 2204 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2204 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
15 eqid 2204 . . . . . . . . . . . 12 (oppr𝑅) = (oppr𝑅)
16 eqid 2204 . . . . . . . . . . . 12 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
1713, 14, 15, 16crngoppr 13752 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑋) = (𝑦(.r‘(oppr𝑅))𝑋))
18173expa 1205 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑋) = (𝑦(.r‘(oppr𝑅))𝑋))
1918eqcomd 2210 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr𝑅))𝑋) = (𝑦(.r𝑅)𝑋))
2019an32s 568 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr𝑅))𝑋) = (𝑦(.r𝑅)𝑋))
2120eqeq1d 2213 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r‘(oppr𝑅))𝑋) = 1 ↔ (𝑦(.r𝑅)𝑋) = 1 ))
2221rexbidva 2502 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑅))𝑋) = 1 ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑋) = 1 ))
2322pm5.32da 452 . . . . 5 (𝑅 ∈ CRing → ((𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑋) = 1 )))
2415, 13opprbasg 13755 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘(oppr𝑅)))
2515opprring 13759 . . . . . . 7 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
26 ringsrg 13727 . . . . . . 7 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ SRing)
279, 25, 263syl 17 . . . . . 6 (𝑅 ∈ CRing → (oppr𝑅) ∈ SRing)
28 eqidd 2205 . . . . . 6 (𝑅 ∈ CRing → (.r‘(oppr𝑅)) = (.r‘(oppr𝑅)))
2924, 8, 27, 28dvdsrd 13774 . . . . 5 (𝑅 ∈ CRing → (𝑋(∥r‘(oppr𝑅)) 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑅))𝑋) = 1 )))
30 eqidd 2205 . . . . . 6 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅))
31 eqidd 2205 . . . . . 6 (𝑅 ∈ CRing → (.r𝑅) = (.r𝑅))
3230, 6, 11, 31dvdsrd 13774 . . . . 5 (𝑅 ∈ CRing → (𝑋 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑋) = 1 )))
3323, 29, 323bitr4d 220 . . . 4 (𝑅 ∈ CRing → (𝑋(∥r‘(oppr𝑅)) 1𝑋 1 ))
3433anbi2d 464 . . 3 (𝑅 ∈ CRing → ((𝑋 1𝑋(∥r‘(oppr𝑅)) 1 ) ↔ (𝑋 1𝑋 1 )))
3512, 34bitrd 188 . 2 (𝑅 ∈ CRing → (𝑋𝑈 ↔ (𝑋 1𝑋 1 )))
36 pm4.24 395 . 2 (𝑋 1 ↔ (𝑋 1𝑋 1 ))
3735, 36bitr4di 198 1 (𝑅 ∈ CRing → (𝑋𝑈𝑋 1 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wrex 2484   class class class wbr 4043  cfv 5268  (class class class)co 5934  Basecbs 12751  .rcmulr 12829  1rcur 13639  SRingcsrg 13643  Ringcrg 13676  CRingccrg 13677  opprcoppr 13747  rcdsr 13766  Unitcui 13767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-tpos 6321  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-plusg 12841  df-mulr 12842  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-minusg 13254  df-cmn 13540  df-abl 13541  df-mgp 13601  df-ur 13640  df-srg 13644  df-ring 13678  df-cring 13679  df-oppr 13748  df-dvdsr 13769  df-unit 13770
This theorem is referenced by:  dvdsunit  13792  cnfldui  14269  znunit  14339
  Copyright terms: Public domain W3C validator