| Step | Hyp | Ref
| Expression |
| 1 | | crngunit.1 |
. . . . 5
⊢ 𝑈 = (Unit‘𝑅) |
| 2 | 1 | a1i 9 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑈 = (Unit‘𝑅)) |
| 3 | | crngunit.2 |
. . . . 5
⊢ 1 =
(1r‘𝑅) |
| 4 | 3 | a1i 9 |
. . . 4
⊢ (𝑅 ∈ CRing → 1 =
(1r‘𝑅)) |
| 5 | | crngunit.3 |
. . . . 5
⊢ ∥ =
(∥r‘𝑅) |
| 6 | 5 | a1i 9 |
. . . 4
⊢ (𝑅 ∈ CRing → ∥ =
(∥r‘𝑅)) |
| 7 | | eqidd 2197 |
. . . 4
⊢ (𝑅 ∈ CRing →
(oppr‘𝑅) = (oppr‘𝑅)) |
| 8 | | eqidd 2197 |
. . . 4
⊢ (𝑅 ∈ CRing →
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅))) |
| 9 | | crngring 13564 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 10 | | ringsrg 13603 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| 11 | 9, 10 | syl 14 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑅 ∈ SRing) |
| 12 | 2, 4, 6, 7, 8, 11 | isunitd 13662 |
. . 3
⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 ))) |
| 13 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 14 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 15 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
| 16 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
| 17 | 13, 14, 15, 16 | crngoppr 13628 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
| 18 | 17 | 3expa 1205 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
| 19 | 18 | eqcomd 2202 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
| 20 | 19 | an32s 568 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
| 21 | 20 | eqeq1d 2205 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ (𝑦(.r‘𝑅)𝑋)
= 1
)) |
| 22 | 21 | rexbidva 2494 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋)
= 1
)) |
| 23 | 22 | pm5.32da 452 |
. . . . 5
⊢ (𝑅 ∈ CRing → ((𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋)
= 1
))) |
| 24 | 15, 13 | opprbasg 13631 |
. . . . . 6
⊢ (𝑅 ∈ CRing →
(Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
| 25 | 15 | opprring 13635 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) |
| 26 | | ringsrg 13603 |
. . . . . . 7
⊢
((oppr‘𝑅) ∈ Ring →
(oppr‘𝑅) ∈ SRing) |
| 27 | 9, 25, 26 | 3syl 17 |
. . . . . 6
⊢ (𝑅 ∈ CRing →
(oppr‘𝑅) ∈ SRing) |
| 28 | | eqidd 2197 |
. . . . . 6
⊢ (𝑅 ∈ CRing →
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅))) |
| 29 | 24, 8, 27, 28 | dvdsrd 13650 |
. . . . 5
⊢ (𝑅 ∈ CRing → (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ))) |
| 30 | | eqidd 2197 |
. . . . . 6
⊢ (𝑅 ∈ CRing →
(Base‘𝑅) =
(Base‘𝑅)) |
| 31 | | eqidd 2197 |
. . . . . 6
⊢ (𝑅 ∈ CRing →
(.r‘𝑅) =
(.r‘𝑅)) |
| 32 | 30, 6, 11, 31 | dvdsrd 13650 |
. . . . 5
⊢ (𝑅 ∈ CRing → (𝑋 ∥ 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 ))) |
| 33 | 23, 29, 32 | 3bitr4d 220 |
. . . 4
⊢ (𝑅 ∈ CRing → (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ 𝑋 ∥ 1 )) |
| 34 | 33 | anbi2d 464 |
. . 3
⊢ (𝑅 ∈ CRing → ((𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 ) ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ))) |
| 35 | 12, 34 | bitrd 188 |
. 2
⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ))) |
| 36 | | pm4.24 395 |
. 2
⊢ (𝑋 ∥ 1 ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 )) |
| 37 | 35, 36 | bitr4di 198 |
1
⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |