Proof of Theorem sbidm
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-sb 1777 | 
. . . . 5
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 2 | 1 | simplbi 274 | 
. . . 4
⊢ ([𝑦 / 𝑥]𝜑 → (𝑥 = 𝑦 → 𝜑)) | 
| 3 | 2 | sbimi 1778 | 
. . 3
⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝑥 = 𝑦 → 𝜑)) | 
| 4 |   | sbequ8 1861 | 
. . 3
⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥](𝑥 = 𝑦 → 𝜑)) | 
| 5 | 3, 4 | sylibr 134 | 
. 2
⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑) | 
| 6 |   | ax-1 6 | 
. . 3
⊢ ([𝑦 / 𝑥]𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑)) | 
| 7 |   | sb1 1780 | 
. . . 4
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | 
| 8 |   | pm4.24 395 | 
. . . . . . . 8
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 9 |   | ax-ie1 1507 | 
. . . . . . . . 9
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | 
| 10 | 9 | 19.41h 1699 | 
. . . . . . . 8
⊢
(∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 11 | 8, 10 | bitr4i 187 | 
. . . . . . 7
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 12 |   | ax-1 6 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 = 𝑦 → 𝜑)) | 
| 13 | 12 | anim2i 342 | 
. . . . . . . . 9
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑))) | 
| 14 | 13 | anim1i 340 | 
. . . . . . . 8
⊢ (((𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 15 | 14 | eximi 1614 | 
. . . . . . 7
⊢
(∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ∃𝑥((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 16 | 11, 15 | sylbi 121 | 
. . . . . 6
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 17 |   | anass 401 | 
. . . . . . 7
⊢ (((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (𝑥 = 𝑦 ∧ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) | 
| 18 | 17 | exbii 1619 | 
. . . . . 6
⊢
(∃𝑥((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ∃𝑥(𝑥 = 𝑦 ∧ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) | 
| 19 | 16, 18 | sylib 122 | 
. . . . 5
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) | 
| 20 | 1 | anbi2i 457 | 
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝑥 = 𝑦 ∧ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) | 
| 21 | 20 | exbii 1619 | 
. . . . 5
⊢
(∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) | 
| 22 | 19, 21 | sylibr 134 | 
. . . 4
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑)) | 
| 23 | 7, 22 | syl 14 | 
. . 3
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑)) | 
| 24 |   | df-sb 1777 | 
. . 3
⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑))) | 
| 25 | 6, 23, 24 | sylanbrc 417 | 
. 2
⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥][𝑦 / 𝑥]𝜑) | 
| 26 | 5, 25 | impbii 126 | 
1
⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |