Proof of Theorem sbidm
Step | Hyp | Ref
| Expression |
1 | | df-sb 1751 |
. . . . 5
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
2 | 1 | simplbi 272 |
. . . 4
⊢ ([𝑦 / 𝑥]𝜑 → (𝑥 = 𝑦 → 𝜑)) |
3 | 2 | sbimi 1752 |
. . 3
⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝑥 = 𝑦 → 𝜑)) |
4 | | sbequ8 1835 |
. . 3
⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥](𝑥 = 𝑦 → 𝜑)) |
5 | 3, 4 | sylibr 133 |
. 2
⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑) |
6 | | ax-1 6 |
. . 3
⊢ ([𝑦 / 𝑥]𝜑 → (𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑)) |
7 | | sb1 1754 |
. . . 4
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
8 | | pm4.24 393 |
. . . . . . . 8
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
9 | | ax-ie1 1481 |
. . . . . . . . 9
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
10 | 9 | 19.41h 1673 |
. . . . . . . 8
⊢
(∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
11 | 8, 10 | bitr4i 186 |
. . . . . . 7
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
12 | | ax-1 6 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 = 𝑦 → 𝜑)) |
13 | 12 | anim2i 340 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑))) |
14 | 13 | anim1i 338 |
. . . . . . . 8
⊢ (((𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
15 | 14 | eximi 1588 |
. . . . . . 7
⊢
(∃𝑥((𝑥 = 𝑦 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ∃𝑥((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
16 | 11, 15 | sylbi 120 |
. . . . . 6
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
17 | | anass 399 |
. . . . . . 7
⊢ (((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (𝑥 = 𝑦 ∧ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) |
18 | 17 | exbii 1593 |
. . . . . 6
⊢
(∃𝑥((𝑥 = 𝑦 ∧ (𝑥 = 𝑦 → 𝜑)) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ∃𝑥(𝑥 = 𝑦 ∧ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) |
19 | 16, 18 | sylib 121 |
. . . . 5
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) |
20 | 1 | anbi2i 453 |
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝑥 = 𝑦 ∧ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) |
21 | 20 | exbii 1593 |
. . . . 5
⊢
(∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)))) |
22 | 19, 21 | sylibr 133 |
. . . 4
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑)) |
23 | 7, 22 | syl 14 |
. . 3
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑)) |
24 | | df-sb 1751 |
. . 3
⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ [𝑦 / 𝑥]𝜑))) |
25 | 6, 23, 24 | sylanbrc 414 |
. 2
⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥][𝑦 / 𝑥]𝜑) |
26 | 5, 25 | impbii 125 |
1
⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |