| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvscl | GIF version | ||
| Description: Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvscl | ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 | . 2 ⊢ (𝑊 ∈ LMod ↔ 𝑊 ∈ LMod) | |
| 2 | pm4.24 395 | . 2 ⊢ (𝑅 ∈ 𝐾 ↔ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) | |
| 3 | pm4.24 395 | . 2 ⊢ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) | |
| 4 | lmodvscl.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2229 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 6 | lmodvscl.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | lmodvscl.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | lmodvscl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 9 | eqid 2229 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 10 | eqid 2229 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 11 | eqid 2229 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | lmodlema 14264 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 13 | 12 | simpld 112 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)))) |
| 14 | 13 | simp1d 1033 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
| 15 | 1, 2, 3, 14 | syl3anb 1314 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 .rcmulr 13119 Scalarcsca 13121 ·𝑠 cvsca 13122 1rcur 13930 LModclmod 14259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-lmod 14261 |
| This theorem is referenced by: lmodscaf 14282 lmod0vs 14293 lmodvsmmulgdi 14295 lcomf 14299 lmodvneg1 14302 lmodvsneg 14303 lmodnegadd 14308 lmodsubvs 14315 lmodsubdi 14316 lmodsubdir 14317 lmodprop2d 14320 lss1 14334 lssvsubcl 14338 lssvscl 14347 lss1d 14355 |
| Copyright terms: Public domain | W3C validator |