| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvscl | GIF version | ||
| Description: Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvscl | ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 | . 2 ⊢ (𝑊 ∈ LMod ↔ 𝑊 ∈ LMod) | |
| 2 | pm4.24 395 | . 2 ⊢ (𝑅 ∈ 𝐾 ↔ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) | |
| 3 | pm4.24 395 | . 2 ⊢ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) | |
| 4 | lmodvscl.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2196 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 6 | lmodvscl.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | lmodvscl.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | lmodvscl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 9 | eqid 2196 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 10 | eqid 2196 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 11 | eqid 2196 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | lmodlema 13848 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 13 | 12 | simpld 112 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)))) |
| 14 | 13 | simp1d 1011 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
| 15 | 1, 2, 3, 14 | syl3anb 1292 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 .rcmulr 12756 Scalarcsca 12758 ·𝑠 cvsca 12759 1rcur 13515 LModclmod 13843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-lmod 13845 |
| This theorem is referenced by: lmodscaf 13866 lmod0vs 13877 lmodvsmmulgdi 13879 lcomf 13883 lmodvneg1 13886 lmodvsneg 13887 lmodnegadd 13892 lmodsubvs 13899 lmodsubdi 13900 lmodsubdir 13901 lmodprop2d 13904 lss1 13918 lssvsubcl 13922 lssvscl 13931 lss1d 13939 |
| Copyright terms: Public domain | W3C validator |