| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvscl | GIF version | ||
| Description: Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvscl | ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 | . 2 ⊢ (𝑊 ∈ LMod ↔ 𝑊 ∈ LMod) | |
| 2 | pm4.24 395 | . 2 ⊢ (𝑅 ∈ 𝐾 ↔ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) | |
| 3 | pm4.24 395 | . 2 ⊢ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) | |
| 4 | lmodvscl.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2209 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 6 | lmodvscl.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | lmodvscl.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 8 | lmodvscl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 9 | eqid 2209 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 10 | eqid 2209 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 11 | eqid 2209 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | lmodlema 14221 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋))) |
| 13 | 12 | simpld 112 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)))) |
| 14 | 13 | simp1d 1014 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
| 15 | 1, 2, 3, 14 | syl3anb 1295 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 .rcmulr 13077 Scalarcsca 13079 ·𝑠 cvsca 13080 1rcur 13888 LModclmod 14216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-ov 5977 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-lmod 14218 |
| This theorem is referenced by: lmodscaf 14239 lmod0vs 14250 lmodvsmmulgdi 14252 lcomf 14256 lmodvneg1 14259 lmodvsneg 14260 lmodnegadd 14265 lmodsubvs 14272 lmodsubdi 14273 lmodsubdir 14274 lmodprop2d 14277 lss1 14291 lssvsubcl 14295 lssvscl 14304 lss1d 14312 |
| Copyright terms: Public domain | W3C validator |