Proof of Theorem xrmaxiflemcom
Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → 𝐵 = +∞) |
2 | 1 | iftrued 3527 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) =
+∞) |
3 | | xrpnfdc 9778 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = +∞) |
4 | 3 | ad2antrr 480 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → DECID
𝐴 =
+∞) |
5 | | exmiddc 826 |
. . . . . 6
⊢
(DECID 𝐴 = +∞ → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
6 | 4, 5 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
7 | | eqid 2165 |
. . . . . . . 8
⊢ +∞
= +∞ |
8 | 7 | biantru 300 |
. . . . . . 7
⊢ (𝐴 = +∞ ↔ (𝐴 = +∞ ∧ +∞ =
+∞)) |
9 | 8 | a1i 9 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → (𝐴 = +∞ ↔ (𝐴 = +∞ ∧ +∞ =
+∞))) |
10 | | xrmnfdc 9779 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = -∞) |
11 | 10 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → DECID
𝐴 =
-∞) |
12 | | exmiddc 826 |
. . . . . . . . . 10
⊢
(DECID 𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
13 | 11, 12 | syl 14 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
14 | | iba 298 |
. . . . . . . . . . . 12
⊢ (+∞
= 𝐵 → (𝐴 = -∞ ↔ (𝐴 = -∞ ∧ +∞ =
𝐵))) |
15 | 14 | eqcoms 2168 |
. . . . . . . . . . 11
⊢ (𝐵 = +∞ → (𝐴 = -∞ ↔ (𝐴 = -∞ ∧ +∞ =
𝐵))) |
16 | 15 | adantl 275 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → (𝐴 = -∞ ↔ (𝐴 = -∞ ∧ +∞ = 𝐵))) |
17 | 1 | iftrued 3527 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))) =
+∞) |
18 | 17 | eqcomd 2171 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → +∞ = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))) |
19 | 18 | biantrud 302 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → (¬ 𝐴 = -∞ ↔ (¬ 𝐴 = -∞ ∧ +∞ = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
20 | 16, 19 | orbi12d 783 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → ((𝐴 = -∞ ∨ ¬ 𝐴 = -∞) ↔ ((𝐴 = -∞ ∧ +∞ = 𝐵) ∨ (¬ 𝐴 = -∞ ∧ +∞ = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))) |
21 | 13, 20 | mpbid 146 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → ((𝐴 = -∞ ∧ +∞ = 𝐵) ∨ (¬ 𝐴 = -∞ ∧ +∞ = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
22 | | eqifdc 3554 |
. . . . . . . . 9
⊢
(DECID 𝐴 = -∞ → (+∞ = if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))) ↔ ((𝐴 = -∞ ∧ +∞ =
𝐵) ∨ (¬ 𝐴 = -∞ ∧ +∞ =
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))) |
23 | 11, 22 | syl 14 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → (+∞ = if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))) ↔ ((𝐴 = -∞ ∧ +∞ =
𝐵) ∨ (¬ 𝐴 = -∞ ∧ +∞ =
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))) |
24 | 21, 23 | mpbird 166 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → +∞ = if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))) |
25 | 24 | biantrud 302 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → (¬ 𝐴 = +∞ ↔ (¬ 𝐴 = +∞ ∧ +∞ = if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))) |
26 | 9, 25 | orbi12d 783 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → ((𝐴 = +∞ ∨ ¬ 𝐴 = +∞) ↔ ((𝐴 = +∞ ∧ +∞ = +∞) ∨
(¬ 𝐴 = +∞ ∧
+∞ = if(𝐴 = -∞,
𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))))) |
27 | 6, 26 | mpbid 146 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → ((𝐴 = +∞ ∧ +∞ = +∞) ∨
(¬ 𝐴 = +∞ ∧
+∞ = if(𝐴 = -∞,
𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))) |
28 | | eqifdc 3554 |
. . . . 5
⊢
(DECID 𝐴 = +∞ → (+∞ = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))) ↔ ((𝐴 = +∞ ∧ +∞ =
+∞) ∨ (¬ 𝐴 =
+∞ ∧ +∞ = if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))))) |
29 | 4, 28 | syl 14 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → (+∞ = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))) ↔ ((𝐴 = +∞ ∧ +∞ =
+∞) ∨ (¬ 𝐴 =
+∞ ∧ +∞ = if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))))) |
30 | 27, 29 | mpbird 166 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → +∞ = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
31 | 2, 30 | eqtrd 2198 |
. 2
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
32 | 3, 5 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ (𝐴 = +∞ ∨
¬ 𝐴 =
+∞)) |
33 | 32 | ad3antrrr 484 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → (𝐴 = +∞ ∨ ¬ 𝐴 = +∞)) |
34 | | pm4.24 393 |
. . . . . . . . 9
⊢ (𝐴 = +∞ ↔ (𝐴 = +∞ ∧ 𝐴 = +∞)) |
35 | 34 | a1i 9 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → (𝐴 = +∞ ↔ (𝐴 = +∞ ∧ 𝐴 = +∞))) |
36 | 10 | ad3antrrr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → DECID
𝐴 =
-∞) |
37 | 36, 12 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
38 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐵 = -∞) |
39 | 38 | eqeq2d 2177 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ↔ 𝐴 = -∞)) |
40 | 39 | anbi2d 460 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → ((𝐴 = -∞ ∧ 𝐴 = 𝐵) ↔ (𝐴 = -∞ ∧ 𝐴 = -∞))) |
41 | | anidm 394 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = -∞ ∧ 𝐴 = -∞) ↔ 𝐴 = -∞) |
42 | 40, 41 | bitr2di 196 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → (𝐴 = -∞ ↔ (𝐴 = -∞ ∧ 𝐴 = 𝐵))) |
43 | | eqid 2165 |
. . . . . . . . . . . . . 14
⊢ 𝐴 = 𝐴 |
44 | 43 | biantru 300 |
. . . . . . . . . . . . 13
⊢ (¬
𝐴 = -∞ ↔ (¬
𝐴 = -∞ ∧ 𝐴 = 𝐴)) |
45 | 44 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → (¬ 𝐴 = -∞ ↔ (¬ 𝐴 = -∞ ∧ 𝐴 = 𝐴))) |
46 | 42, 45 | orbi12d 783 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → ((𝐴 = -∞ ∨ ¬ 𝐴 = -∞) ↔ ((𝐴 = -∞ ∧ 𝐴 = 𝐵) ∨ (¬ 𝐴 = -∞ ∧ 𝐴 = 𝐴)))) |
47 | 37, 46 | mpbid 146 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → ((𝐴 = -∞ ∧ 𝐴 = 𝐵) ∨ (¬ 𝐴 = -∞ ∧ 𝐴 = 𝐴))) |
48 | | eqifdc 3554 |
. . . . . . . . . . 11
⊢
(DECID 𝐴 = -∞ → (𝐴 = if(𝐴 = -∞, 𝐵, 𝐴) ↔ ((𝐴 = -∞ ∧ 𝐴 = 𝐵) ∨ (¬ 𝐴 = -∞ ∧ 𝐴 = 𝐴)))) |
49 | 36, 48 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → (𝐴 = if(𝐴 = -∞, 𝐵, 𝐴) ↔ ((𝐴 = -∞ ∧ 𝐴 = 𝐵) ∨ (¬ 𝐴 = -∞ ∧ 𝐴 = 𝐴)))) |
50 | 47, 49 | mpbird 166 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴 = if(𝐴 = -∞, 𝐵, 𝐴)) |
51 | 50 | biantrud 302 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → (¬ 𝐴 = +∞ ↔ (¬ 𝐴 = +∞ ∧ 𝐴 = if(𝐴 = -∞, 𝐵, 𝐴)))) |
52 | 35, 51 | orbi12d 783 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → ((𝐴 = +∞ ∨ ¬ 𝐴 = +∞) ↔ ((𝐴 = +∞ ∧ 𝐴 = +∞) ∨ (¬ 𝐴 = +∞ ∧ 𝐴 = if(𝐴 = -∞, 𝐵, 𝐴))))) |
53 | 33, 52 | mpbid 146 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → ((𝐴 = +∞ ∧ 𝐴 = +∞) ∨ (¬ 𝐴 = +∞ ∧ 𝐴 = if(𝐴 = -∞, 𝐵, 𝐴)))) |
54 | 3 | ad3antrrr 484 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → DECID
𝐴 =
+∞) |
55 | | eqifdc 3554 |
. . . . . . 7
⊢
(DECID 𝐴 = +∞ → (𝐴 = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, 𝐴)) ↔ ((𝐴 = +∞ ∧ 𝐴 = +∞) ∨ (¬ 𝐴 = +∞ ∧ 𝐴 = if(𝐴 = -∞, 𝐵, 𝐴))))) |
56 | 54, 55 | syl 14 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → (𝐴 = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, 𝐴)) ↔ ((𝐴 = +∞ ∧ 𝐴 = +∞) ∨ (¬ 𝐴 = +∞ ∧ 𝐴 = if(𝐴 = -∞, 𝐵, 𝐴))))) |
57 | 53, 56 | mpbird 166 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → 𝐴 = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, 𝐴))) |
58 | 38 | iftrued 3527 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = 𝐴) |
59 | 38 | iftrued 3527 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )) = 𝐴) |
60 | 59 | ifeq2d 3538 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → if(𝐴 = -∞, 𝐵, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))) = if(𝐴 = -∞, 𝐵, 𝐴)) |
61 | 60 | ifeq2d 3538 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, 𝐴))) |
62 | 57, 58, 61 | 3eqtr4d 2208 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))) |
63 | | simpr 109 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = -∞) |
64 | 63 | iffalsed 3530 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) |
65 | 63 | iffalsed 3530 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )) = sup({𝐵, 𝐴}, ℝ, < )) |
66 | 65 | ifeq2d 3538 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐴 = -∞, 𝐵, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))) = if(𝐴 = -∞, 𝐵, sup({𝐵, 𝐴}, ℝ, < ))) |
67 | 66 | ifeq2d 3538 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐵, 𝐴}, ℝ, < )))) |
68 | | maxcom 11145 |
. . . . . . 7
⊢
sup({𝐵, 𝐴}, ℝ, < ) = sup({𝐴, 𝐵}, ℝ, < ) |
69 | | ifeq2 3524 |
. . . . . . 7
⊢
(sup({𝐵, 𝐴}, ℝ, < ) = sup({𝐴, 𝐵}, ℝ, < ) → if(𝐴 = -∞, 𝐵, sup({𝐵, 𝐴}, ℝ, < )) = if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) |
70 | | ifeq2 3524 |
. . . . . . 7
⊢ (if(𝐴 = -∞, 𝐵, sup({𝐵, 𝐴}, ℝ, < )) = if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐵, 𝐴}, ℝ, < ))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) |
71 | 68, 69, 70 | mp2b 8 |
. . . . . 6
⊢ if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐵, 𝐴}, ℝ, < ))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))) |
72 | 67, 71 | eqtrdi 2215 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) |
73 | 64, 72 | eqtr4d 2201 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))) |
74 | | xrmnfdc 9779 |
. . . . . 6
⊢ (𝐵 ∈ ℝ*
→ DECID 𝐵 = -∞) |
75 | | exmiddc 826 |
. . . . . 6
⊢
(DECID 𝐵 = -∞ → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞)) |
76 | 74, 75 | syl 14 |
. . . . 5
⊢ (𝐵 ∈ ℝ*
→ (𝐵 = -∞ ∨
¬ 𝐵 =
-∞)) |
77 | 76 | ad2antlr 481 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) → (𝐵 = -∞ ∨ ¬ 𝐵 = -∞)) |
78 | 62, 73, 77 | mpjaodan 788 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) → if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))) |
79 | | simpr 109 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) → ¬ 𝐵 = +∞) |
80 | 79 | iffalsed 3530 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) |
81 | 79 | iffalsed 3530 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))) = if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))) |
82 | 81 | ifeq2d 3538 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) → if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))) = if(𝐴 = -∞, 𝐵, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))) |
83 | 82 | ifeq2d 3538 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) → if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))) |
84 | 78, 80, 83 | 3eqtr4d 2208 |
. 2
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐵 = +∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
85 | | xrpnfdc 9778 |
. . . 4
⊢ (𝐵 ∈ ℝ*
→ DECID 𝐵 = +∞) |
86 | | exmiddc 826 |
. . . 4
⊢
(DECID 𝐵 = +∞ → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞)) |
87 | 85, 86 | syl 14 |
. . 3
⊢ (𝐵 ∈ ℝ*
→ (𝐵 = +∞ ∨
¬ 𝐵 =
+∞)) |
88 | 87 | adantl 275 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐵 = +∞ ∨ ¬ 𝐵 = +∞)) |
89 | 31, 84, 88 | mpjaodan 788 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |