Proof of Theorem srg1zr
Step | Hyp | Ref
| Expression |
1 | | pm4.24 395 |
. 2
⊢ (𝐵 = {𝑍} ↔ (𝐵 = {𝑍} ∧ 𝐵 = {𝑍})) |
2 | | srgmnd 12943 |
. . . . . . 7
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
3 | 2 | 3ad2ant1 1018 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → 𝑅 ∈ Mnd) |
4 | 3 | adantr 276 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ Mnd) |
5 | | mndmgm 12688 |
. . . . 5
⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) |
6 | 4, 5 | syl 14 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ Mgm) |
7 | | simpr 110 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) |
8 | | simpl2 1001 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → + Fn (𝐵 × 𝐵)) |
9 | | srg1zr.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
10 | | srg1zr.p |
. . . . 5
⊢ + =
(+g‘𝑅) |
11 | 9, 10 | mgmb1mgm1 12652 |
. . . 4
⊢ ((𝑅 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
12 | 6, 7, 8, 11 | syl3anc 1238 |
. . 3
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
13 | | eqid 2175 |
. . . . . . . 8
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
14 | 13, 9 | mgpbasg 12930 |
. . . . . . 7
⊢ (𝑅 ∈ SRing → 𝐵 =
(Base‘(mulGrp‘𝑅))) |
15 | 14 | 3ad2ant1 1018 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
16 | 15 | adantr 276 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
17 | 16 | eqeq1d 2184 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ (Base‘(mulGrp‘𝑅)) = {𝑍})) |
18 | | simpl1 1000 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ SRing) |
19 | 13 | srgmgp 12944 |
. . . . . 6
⊢ (𝑅 ∈ SRing →
(mulGrp‘𝑅) ∈
Mnd) |
20 | | mndmgm 12688 |
. . . . . 6
⊢
((mulGrp‘𝑅)
∈ Mnd → (mulGrp‘𝑅) ∈ Mgm) |
21 | 18, 19, 20 | 3syl 17 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mgm) |
22 | 7, 16 | eleqtrd 2254 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ (Base‘(mulGrp‘𝑅))) |
23 | | srg1zr.t |
. . . . . . . . . . 11
⊢ ∗ =
(.r‘𝑅) |
24 | 13, 23 | mgpplusgg 12929 |
. . . . . . . . . 10
⊢ (𝑅 ∈ SRing → ∗ =
(+g‘(mulGrp‘𝑅))) |
25 | 24 | fneq1d 5298 |
. . . . . . . . 9
⊢ (𝑅 ∈ SRing → ( ∗ Fn
(𝐵 × 𝐵) ↔
(+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))) |
26 | 25 | biimpa 296 |
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ ∗ Fn
(𝐵 × 𝐵)) →
(+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
27 | 26 | 3adant2 1016 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) →
(+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
28 | 27 | adantr 276 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) →
(+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
29 | 16 | sqxpeqd 4646 |
. . . . . . 7
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 × 𝐵) = ((Base‘(mulGrp‘𝑅)) ×
(Base‘(mulGrp‘𝑅)))) |
30 | 29 | fneq2d 5299 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) →
((+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵) ↔
(+g‘(mulGrp‘𝑅)) Fn ((Base‘(mulGrp‘𝑅)) ×
(Base‘(mulGrp‘𝑅))))) |
31 | 28, 30 | mpbid 147 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) →
(+g‘(mulGrp‘𝑅)) Fn ((Base‘(mulGrp‘𝑅)) ×
(Base‘(mulGrp‘𝑅)))) |
32 | | eqid 2175 |
. . . . . 6
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
33 | | eqid 2175 |
. . . . . 6
⊢
(+g‘(mulGrp‘𝑅)) =
(+g‘(mulGrp‘𝑅)) |
34 | 32, 33 | mgmb1mgm1 12652 |
. . . . 5
⊢
(((mulGrp‘𝑅)
∈ Mgm ∧ 𝑍 ∈
(Base‘(mulGrp‘𝑅)) ∧
(+g‘(mulGrp‘𝑅)) Fn ((Base‘(mulGrp‘𝑅)) ×
(Base‘(mulGrp‘𝑅)))) → ((Base‘(mulGrp‘𝑅)) = {𝑍} ↔
(+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
35 | 21, 22, 31, 34 | syl3anc 1238 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → ((Base‘(mulGrp‘𝑅)) = {𝑍} ↔
(+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
36 | 24 | eqcomd 2181 |
. . . . . 6
⊢ (𝑅 ∈ SRing →
(+g‘(mulGrp‘𝑅)) = ∗ ) |
37 | 18, 36 | syl 14 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) →
(+g‘(mulGrp‘𝑅)) = ∗ ) |
38 | 37 | eqeq1d 2184 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) →
((+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉} ↔ ∗ =
{〈〈𝑍, 𝑍〉, 𝑍〉})) |
39 | 17, 35, 38 | 3bitrd 214 |
. . 3
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ∗ =
{〈〈𝑍, 𝑍〉, 𝑍〉})) |
40 | 12, 39 | anbi12d 473 |
. 2
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → ((𝐵 = {𝑍} ∧ 𝐵 = {𝑍}) ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ =
{〈〈𝑍, 𝑍〉, 𝑍〉}))) |
41 | 1, 40 | bitrid 192 |
1
⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ =
{〈〈𝑍, 𝑍〉, 𝑍〉}))) |