ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srg1zr GIF version

Theorem srg1zr 13667
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
Hypotheses
Ref Expression
srg1zr.b 𝐵 = (Base‘𝑅)
srg1zr.p + = (+g𝑅)
srg1zr.t = (.r𝑅)
Assertion
Ref Expression
srg1zr (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))

Proof of Theorem srg1zr
StepHypRef Expression
1 pm4.24 395 . 2 (𝐵 = {𝑍} ↔ (𝐵 = {𝑍} ∧ 𝐵 = {𝑍}))
2 srgmnd 13647 . . . . . . 7 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
323ad2ant1 1020 . . . . . 6 ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → 𝑅 ∈ Mnd)
43adantr 276 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ Mnd)
5 mndmgm 13172 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
64, 5syl 14 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ Mgm)
7 simpr 110 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑍𝐵)
8 simpl2 1003 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → + Fn (𝐵 × 𝐵))
9 srg1zr.b . . . . 5 𝐵 = (Base‘𝑅)
10 srg1zr.p . . . . 5 + = (+g𝑅)
119, 10mgmb1mgm1 13118 . . . 4 ((𝑅 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
126, 7, 8, 11syl3anc 1249 . . 3 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
13 eqid 2204 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1413, 9mgpbasg 13606 . . . . . . 7 (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
15143ad2ant1 1020 . . . . . 6 ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅)))
1615adantr 276 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅)))
1716eqeq1d 2213 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ (Base‘(mulGrp‘𝑅)) = {𝑍}))
18 simpl1 1002 . . . . . 6 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ SRing)
1913srgmgp 13648 . . . . . 6 (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd)
20 mndmgm 13172 . . . . . 6 ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm)
2118, 19, 203syl 17 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (mulGrp‘𝑅) ∈ Mgm)
227, 16eleqtrd 2283 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑍 ∈ (Base‘(mulGrp‘𝑅)))
23 srg1zr.t . . . . . . . . . . 11 = (.r𝑅)
2413, 23mgpplusgg 13604 . . . . . . . . . 10 (𝑅 ∈ SRing → = (+g‘(mulGrp‘𝑅)))
2524fneq1d 5358 . . . . . . . . 9 (𝑅 ∈ SRing → ( Fn (𝐵 × 𝐵) ↔ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)))
2625biimpa 296 . . . . . . . 8 ((𝑅 ∈ SRing ∧ Fn (𝐵 × 𝐵)) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
27263adant2 1018 . . . . . . 7 ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2827adantr 276 . . . . . 6 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2916sqxpeqd 4699 . . . . . . 7 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 × 𝐵) = ((Base‘(mulGrp‘𝑅)) × (Base‘(mulGrp‘𝑅))))
3029fneq2d 5359 . . . . . 6 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → ((+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵) ↔ (+g‘(mulGrp‘𝑅)) Fn ((Base‘(mulGrp‘𝑅)) × (Base‘(mulGrp‘𝑅)))))
3128, 30mpbid 147 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (+g‘(mulGrp‘𝑅)) Fn ((Base‘(mulGrp‘𝑅)) × (Base‘(mulGrp‘𝑅))))
32 eqid 2204 . . . . . 6 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
33 eqid 2204 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
3432, 33mgmb1mgm1 13118 . . . . 5 (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑍 ∈ (Base‘(mulGrp‘𝑅)) ∧ (+g‘(mulGrp‘𝑅)) Fn ((Base‘(mulGrp‘𝑅)) × (Base‘(mulGrp‘𝑅)))) → ((Base‘(mulGrp‘𝑅)) = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
3521, 22, 31, 34syl3anc 1249 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → ((Base‘(mulGrp‘𝑅)) = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
3624eqcomd 2210 . . . . . 6 (𝑅 ∈ SRing → (+g‘(mulGrp‘𝑅)) = )
3718, 36syl 14 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (+g‘(mulGrp‘𝑅)) = )
3837eqeq1d 2213 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → ((+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
3917, 35, 383bitrd 214 . . 3 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
4012, 39anbi12d 473 . 2 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → ((𝐵 = {𝑍} ∧ 𝐵 = {𝑍}) ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
411, 40bitrid 192 1 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  {csn 3632  cop 3635   × cxp 4671   Fn wfn 5263  cfv 5268  Basecbs 12751  +gcplusg 12828  .rcmulr 12829  Mgmcmgm 13104  Mndcmnd 13166  mulGrpcmgp 13600  SRingcsrg 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-plusg 12841  df-mulr 12842  df-0g 13008  df-plusf 13105  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-cmn 13540  df-mgp 13601  df-srg 13644
This theorem is referenced by:  srgen1zr  13668
  Copyright terms: Public domain W3C validator