Step | Hyp | Ref
| Expression |
1 | | elex 2737 |
. . . 4
⊢ (𝐶 ∈ (𝐹 “ 𝐵) → 𝐶 ∈ V) |
2 | 1 | anim2i 340 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ (𝐹 “ 𝐵)) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
3 | | ssel2 3137 |
. . . . . . . 8
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐴) |
4 | | funfvex 5503 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑢 ∈ dom 𝐹) → (𝐹‘𝑢) ∈ V) |
5 | 4 | funfni 5288 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑢 ∈ 𝐴) → (𝐹‘𝑢) ∈ V) |
6 | 3, 5 | sylan2 284 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 ⊆ 𝐴 ∧ 𝑢 ∈ 𝐵)) → (𝐹‘𝑢) ∈ V) |
7 | 6 | anassrs 398 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝑢 ∈ 𝐵) → (𝐹‘𝑢) ∈ V) |
8 | | eleq1 2229 |
. . . . . 6
⊢ ((𝐹‘𝑢) = 𝐶 → ((𝐹‘𝑢) ∈ V ↔ 𝐶 ∈ V)) |
9 | 7, 8 | syl5ibcom 154 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝑢 ∈ 𝐵) → ((𝐹‘𝑢) = 𝐶 → 𝐶 ∈ V)) |
10 | 9 | rexlimdva 2583 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶 → 𝐶 ∈ V)) |
11 | 10 | imdistani 442 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
12 | | eleq1 2229 |
. . . . . . 7
⊢ (𝑣 = 𝐶 → (𝑣 ∈ (𝐹 “ 𝐵) ↔ 𝐶 ∈ (𝐹 “ 𝐵))) |
13 | | eqeq2 2175 |
. . . . . . . 8
⊢ (𝑣 = 𝐶 → ((𝐹‘𝑢) = 𝑣 ↔ (𝐹‘𝑢) = 𝐶)) |
14 | 13 | rexbidv 2467 |
. . . . . . 7
⊢ (𝑣 = 𝐶 → (∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣 ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶)) |
15 | 12, 14 | bibi12d 234 |
. . . . . 6
⊢ (𝑣 = 𝐶 → ((𝑣 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣) ↔ (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶))) |
16 | 15 | imbi2d 229 |
. . . . 5
⊢ (𝑣 = 𝐶 → (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑣 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶)))) |
17 | | fnfun 5285 |
. . . . . . . 8
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
18 | 17 | adantr 274 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → Fun 𝐹) |
19 | | fndm 5287 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
20 | 19 | sseq2d 3172 |
. . . . . . . 8
⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
21 | 20 | biimpar 295 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
22 | | dfimafn 5535 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝐹 “ 𝐵) = {𝑣 ∣ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣}) |
23 | 18, 21, 22 | syl2anc 409 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 “ 𝐵) = {𝑣 ∣ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣}) |
24 | 23 | abeq2d 2279 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑣 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣)) |
25 | 16, 24 | vtoclg 2786 |
. . . 4
⊢ (𝐶 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶))) |
26 | 25 | impcom 124 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶)) |
27 | 2, 11, 26 | pm5.21nd 906 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶)) |
28 | | fveq2 5486 |
. . . 4
⊢ (𝑢 = 𝑥 → (𝐹‘𝑢) = (𝐹‘𝑥)) |
29 | 28 | eqeq1d 2174 |
. . 3
⊢ (𝑢 = 𝑥 → ((𝐹‘𝑢) = 𝐶 ↔ (𝐹‘𝑥) = 𝐶)) |
30 | 29 | cbvrexv 2693 |
. 2
⊢
(∃𝑢 ∈
𝐵 (𝐹‘𝑢) = 𝐶 ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶) |
31 | 27, 30 | bitrdi 195 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |