ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelimab GIF version

Theorem fvelimab 5683
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvelimab
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . . 4 (𝐶 ∈ (𝐹𝐵) → 𝐶 ∈ V)
21anim2i 342 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ (𝐹𝐵)) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
3 ssel2 3219 . . . . . . . 8 ((𝐵𝐴𝑢𝐵) → 𝑢𝐴)
4 funfvex 5640 . . . . . . . . 9 ((Fun 𝐹𝑢 ∈ dom 𝐹) → (𝐹𝑢) ∈ V)
54funfni 5419 . . . . . . . 8 ((𝐹 Fn 𝐴𝑢𝐴) → (𝐹𝑢) ∈ V)
63, 5sylan2 286 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝐵𝐴𝑢𝐵)) → (𝐹𝑢) ∈ V)
76anassrs 400 . . . . . 6 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑢𝐵) → (𝐹𝑢) ∈ V)
8 eleq1 2292 . . . . . 6 ((𝐹𝑢) = 𝐶 → ((𝐹𝑢) ∈ V ↔ 𝐶 ∈ V))
97, 8syl5ibcom 155 . . . . 5 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑢𝐵) → ((𝐹𝑢) = 𝐶𝐶 ∈ V))
109rexlimdva 2648 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑢𝐵 (𝐹𝑢) = 𝐶𝐶 ∈ V))
1110imdistani 445 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ ∃𝑢𝐵 (𝐹𝑢) = 𝐶) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
12 eleq1 2292 . . . . . . 7 (𝑣 = 𝐶 → (𝑣 ∈ (𝐹𝐵) ↔ 𝐶 ∈ (𝐹𝐵)))
13 eqeq2 2239 . . . . . . . 8 (𝑣 = 𝐶 → ((𝐹𝑢) = 𝑣 ↔ (𝐹𝑢) = 𝐶))
1413rexbidv 2531 . . . . . . 7 (𝑣 = 𝐶 → (∃𝑢𝐵 (𝐹𝑢) = 𝑣 ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
1512, 14bibi12d 235 . . . . . 6 (𝑣 = 𝐶 → ((𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣) ↔ (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶)))
1615imbi2d 230 . . . . 5 (𝑣 = 𝐶 → (((𝐹 Fn 𝐴𝐵𝐴) → (𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))))
17 fnfun 5414 . . . . . . . 8 (𝐹 Fn 𝐴 → Fun 𝐹)
1817adantr 276 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → Fun 𝐹)
19 fndm 5416 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2019sseq2d 3254 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
2120biimpar 297 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
22 dfimafn 5675 . . . . . . 7 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝐹𝐵) = {𝑣 ∣ ∃𝑢𝐵 (𝐹𝑢) = 𝑣})
2318, 21, 22syl2anc 411 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) = {𝑣 ∣ ∃𝑢𝐵 (𝐹𝑢) = 𝑣})
2423abeq2d 2342 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣))
2516, 24vtoclg 2861 . . . 4 (𝐶 ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶)))
2625impcom 125 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
272, 11, 26pm5.21nd 921 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
28 fveq2 5623 . . . 4 (𝑢 = 𝑥 → (𝐹𝑢) = (𝐹𝑥))
2928eqeq1d 2238 . . 3 (𝑢 = 𝑥 → ((𝐹𝑢) = 𝐶 ↔ (𝐹𝑥) = 𝐶))
3029cbvrexv 2766 . 2 (∃𝑢𝐵 (𝐹𝑢) = 𝐶 ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)
3127, 30bitrdi 196 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {cab 2215  wrex 2509  Vcvv 2799  wss 3197  dom cdm 4716  cima 4719  Fun wfun 5308   Fn wfn 5309  cfv 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322
This theorem is referenced by:  ssimaex  5688  foima2  5868  rexima  5871  ralima  5872  f1elima  5890  ovelimab  6147
  Copyright terms: Public domain W3C validator