| Step | Hyp | Ref
| Expression |
| 1 | | elex 2774 |
. . . 4
⊢ (𝐶 ∈ (𝐹 “ 𝐵) → 𝐶 ∈ V) |
| 2 | 1 | anim2i 342 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ (𝐹 “ 𝐵)) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
| 3 | | ssel2 3178 |
. . . . . . . 8
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐴) |
| 4 | | funfvex 5575 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑢 ∈ dom 𝐹) → (𝐹‘𝑢) ∈ V) |
| 5 | 4 | funfni 5358 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑢 ∈ 𝐴) → (𝐹‘𝑢) ∈ V) |
| 6 | 3, 5 | sylan2 286 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 ⊆ 𝐴 ∧ 𝑢 ∈ 𝐵)) → (𝐹‘𝑢) ∈ V) |
| 7 | 6 | anassrs 400 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝑢 ∈ 𝐵) → (𝐹‘𝑢) ∈ V) |
| 8 | | eleq1 2259 |
. . . . . 6
⊢ ((𝐹‘𝑢) = 𝐶 → ((𝐹‘𝑢) ∈ V ↔ 𝐶 ∈ V)) |
| 9 | 7, 8 | syl5ibcom 155 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝑢 ∈ 𝐵) → ((𝐹‘𝑢) = 𝐶 → 𝐶 ∈ V)) |
| 10 | 9 | rexlimdva 2614 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶 → 𝐶 ∈ V)) |
| 11 | 10 | imdistani 445 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶) → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V)) |
| 12 | | eleq1 2259 |
. . . . . . 7
⊢ (𝑣 = 𝐶 → (𝑣 ∈ (𝐹 “ 𝐵) ↔ 𝐶 ∈ (𝐹 “ 𝐵))) |
| 13 | | eqeq2 2206 |
. . . . . . . 8
⊢ (𝑣 = 𝐶 → ((𝐹‘𝑢) = 𝑣 ↔ (𝐹‘𝑢) = 𝐶)) |
| 14 | 13 | rexbidv 2498 |
. . . . . . 7
⊢ (𝑣 = 𝐶 → (∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣 ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶)) |
| 15 | 12, 14 | bibi12d 235 |
. . . . . 6
⊢ (𝑣 = 𝐶 → ((𝑣 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣) ↔ (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶))) |
| 16 | 15 | imbi2d 230 |
. . . . 5
⊢ (𝑣 = 𝐶 → (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑣 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶)))) |
| 17 | | fnfun 5355 |
. . . . . . . 8
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| 18 | 17 | adantr 276 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → Fun 𝐹) |
| 19 | | fndm 5357 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| 20 | 19 | sseq2d 3213 |
. . . . . . . 8
⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
| 21 | 20 | biimpar 297 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
| 22 | | dfimafn 5609 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝐹 “ 𝐵) = {𝑣 ∣ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣}) |
| 23 | 18, 21, 22 | syl2anc 411 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 “ 𝐵) = {𝑣 ∣ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣}) |
| 24 | 23 | abeq2d 2309 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑣 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝑣)) |
| 25 | 16, 24 | vtoclg 2824 |
. . . 4
⊢ (𝐶 ∈ V → ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶))) |
| 26 | 25 | impcom 125 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶)) |
| 27 | 2, 11, 26 | pm5.21nd 917 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (𝐹‘𝑢) = 𝐶)) |
| 28 | | fveq2 5558 |
. . . 4
⊢ (𝑢 = 𝑥 → (𝐹‘𝑢) = (𝐹‘𝑥)) |
| 29 | 28 | eqeq1d 2205 |
. . 3
⊢ (𝑢 = 𝑥 → ((𝐹‘𝑢) = 𝐶 ↔ (𝐹‘𝑥) = 𝐶)) |
| 30 | 29 | cbvrexv 2730 |
. 2
⊢
(∃𝑢 ∈
𝐵 (𝐹‘𝑢) = 𝐶 ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶) |
| 31 | 27, 30 | bitrdi 196 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) |