ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelimab GIF version

Theorem fvelimab 5485
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvelimab
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2700 . . . 4 (𝐶 ∈ (𝐹𝐵) → 𝐶 ∈ V)
21anim2i 340 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ (𝐹𝐵)) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
3 ssel2 3097 . . . . . . . 8 ((𝐵𝐴𝑢𝐵) → 𝑢𝐴)
4 funfvex 5446 . . . . . . . . 9 ((Fun 𝐹𝑢 ∈ dom 𝐹) → (𝐹𝑢) ∈ V)
54funfni 5231 . . . . . . . 8 ((𝐹 Fn 𝐴𝑢𝐴) → (𝐹𝑢) ∈ V)
63, 5sylan2 284 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝐵𝐴𝑢𝐵)) → (𝐹𝑢) ∈ V)
76anassrs 398 . . . . . 6 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑢𝐵) → (𝐹𝑢) ∈ V)
8 eleq1 2203 . . . . . 6 ((𝐹𝑢) = 𝐶 → ((𝐹𝑢) ∈ V ↔ 𝐶 ∈ V))
97, 8syl5ibcom 154 . . . . 5 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑢𝐵) → ((𝐹𝑢) = 𝐶𝐶 ∈ V))
109rexlimdva 2552 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑢𝐵 (𝐹𝑢) = 𝐶𝐶 ∈ V))
1110imdistani 442 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ ∃𝑢𝐵 (𝐹𝑢) = 𝐶) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
12 eleq1 2203 . . . . . . 7 (𝑣 = 𝐶 → (𝑣 ∈ (𝐹𝐵) ↔ 𝐶 ∈ (𝐹𝐵)))
13 eqeq2 2150 . . . . . . . 8 (𝑣 = 𝐶 → ((𝐹𝑢) = 𝑣 ↔ (𝐹𝑢) = 𝐶))
1413rexbidv 2439 . . . . . . 7 (𝑣 = 𝐶 → (∃𝑢𝐵 (𝐹𝑢) = 𝑣 ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
1512, 14bibi12d 234 . . . . . 6 (𝑣 = 𝐶 → ((𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣) ↔ (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶)))
1615imbi2d 229 . . . . 5 (𝑣 = 𝐶 → (((𝐹 Fn 𝐴𝐵𝐴) → (𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))))
17 fnfun 5228 . . . . . . . 8 (𝐹 Fn 𝐴 → Fun 𝐹)
1817adantr 274 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → Fun 𝐹)
19 fndm 5230 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2019sseq2d 3132 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
2120biimpar 295 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
22 dfimafn 5478 . . . . . . 7 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝐹𝐵) = {𝑣 ∣ ∃𝑢𝐵 (𝐹𝑢) = 𝑣})
2318, 21, 22syl2anc 409 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) = {𝑣 ∣ ∃𝑢𝐵 (𝐹𝑢) = 𝑣})
2423abeq2d 2253 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣))
2516, 24vtoclg 2749 . . . 4 (𝐶 ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶)))
2625impcom 124 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
272, 11, 26pm5.21nd 902 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
28 fveq2 5429 . . . 4 (𝑢 = 𝑥 → (𝐹𝑢) = (𝐹𝑥))
2928eqeq1d 2149 . . 3 (𝑢 = 𝑥 → ((𝐹𝑢) = 𝐶 ↔ (𝐹𝑥) = 𝐶))
3029cbvrexv 2658 . 2 (∃𝑢𝐵 (𝐹𝑢) = 𝐶 ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)
3127, 30syl6bb 195 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  {cab 2126  wrex 2418  Vcvv 2689  wss 3076  dom cdm 4547  cima 4550  Fun wfun 5125   Fn wfn 5126  cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139
This theorem is referenced by:  ssimaex  5490  foima2  5661  rexima  5664  ralima  5665  f1elima  5682  ovelimab  5929
  Copyright terms: Public domain W3C validator