Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzp12 | GIF version |
Description: Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.) |
Ref | Expression |
---|---|
elfzp12 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 9995 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
2 | 1 | anim2i 342 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ)) |
3 | eluzel2 9506 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
4 | eleq1 2238 | . . . . 5 ⊢ (𝐾 = 𝑀 → (𝐾 ∈ ℤ ↔ 𝑀 ∈ ℤ)) | |
5 | 3, 4 | syl5ibrcom 157 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 = 𝑀 → 𝐾 ∈ ℤ)) |
6 | 5 | imdistani 445 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 = 𝑀) → (𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ)) |
7 | elfzelz 9995 | . . . 4 ⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ ℤ) | |
8 | 7 | anim2i 342 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ)) |
9 | 6, 8 | jaodan 797 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))) → (𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ)) |
10 | fzpred 10040 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) | |
11 | 10 | eleq2d 2245 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ ({𝑀} ∪ ((𝑀 + 1)...𝑁)))) |
12 | elun 3274 | . . . 4 ⊢ (𝐾 ∈ ({𝑀} ∪ ((𝑀 + 1)...𝑁)) ↔ (𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))) | |
13 | 11, 12 | bitrdi 196 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
14 | elsng 3604 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ {𝑀} ↔ 𝐾 = 𝑀)) | |
15 | 14 | orbi1d 791 | . . 3 ⊢ (𝐾 ∈ ℤ → ((𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
16 | 13, 15 | sylan9bb 462 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
17 | 2, 9, 16 | pm5.21nd 916 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2146 ∪ cun 3125 {csn 3589 ‘cfv 5208 (class class class)co 5865 1c1 7787 + caddc 7789 ℤcz 9226 ℤ≥cuz 9501 ...cfz 9979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8893 df-n0 9150 df-z 9227 df-uz 9502 df-fz 9980 |
This theorem is referenced by: bcpasc 10714 prmdiv 12202 |
Copyright terms: Public domain | W3C validator |