ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzp12 GIF version

Theorem elfzp12 10102
Description: Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.)
Assertion
Ref Expression
elfzp12 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))

Proof of Theorem elfzp12
StepHypRef Expression
1 elfzelz 10028 . . 3 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
21anim2i 342 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ))
3 eluzel2 9536 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4 eleq1 2240 . . . . 5 (𝐾 = 𝑀 → (𝐾 ∈ ℤ ↔ 𝑀 ∈ ℤ))
53, 4syl5ibrcom 157 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝐾 = 𝑀𝐾 ∈ ℤ))
65imdistani 445 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 = 𝑀) → (𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ))
7 elfzelz 10028 . . . 4 (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ ℤ)
87anim2i 342 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ))
96, 8jaodan 797 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))) → (𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ))
10 fzpred 10073 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
1110eleq2d 2247 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ ({𝑀} ∪ ((𝑀 + 1)...𝑁))))
12 elun 3278 . . . 4 (𝐾 ∈ ({𝑀} ∪ ((𝑀 + 1)...𝑁)) ↔ (𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))
1311, 12bitrdi 196 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))))
14 elsng 3609 . . . 4 (𝐾 ∈ ℤ → (𝐾 ∈ {𝑀} ↔ 𝐾 = 𝑀))
1514orbi1d 791 . . 3 (𝐾 ∈ ℤ → ((𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
1613, 15sylan9bb 462 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
172, 9, 16pm5.21nd 916 1 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  cun 3129  {csn 3594  cfv 5218  (class class class)co 5878  1c1 7815   + caddc 7817  cz 9256  cuz 9531  ...cfz 10011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-fz 10012
This theorem is referenced by:  bcpasc  10749  prmdiv  12238  lgseisenlem1  14590
  Copyright terms: Public domain W3C validator