ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzp12 GIF version

Theorem elfzp12 10069
Description: Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.)
Assertion
Ref Expression
elfzp12 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))

Proof of Theorem elfzp12
StepHypRef Expression
1 elfzelz 9995 . . 3 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
21anim2i 342 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ))
3 eluzel2 9506 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4 eleq1 2238 . . . . 5 (𝐾 = 𝑀 → (𝐾 ∈ ℤ ↔ 𝑀 ∈ ℤ))
53, 4syl5ibrcom 157 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝐾 = 𝑀𝐾 ∈ ℤ))
65imdistani 445 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 = 𝑀) → (𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ))
7 elfzelz 9995 . . . 4 (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ ℤ)
87anim2i 342 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ))
96, 8jaodan 797 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))) → (𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ))
10 fzpred 10040 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
1110eleq2d 2245 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ ({𝑀} ∪ ((𝑀 + 1)...𝑁))))
12 elun 3274 . . . 4 (𝐾 ∈ ({𝑀} ∪ ((𝑀 + 1)...𝑁)) ↔ (𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))
1311, 12bitrdi 196 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))))
14 elsng 3604 . . . 4 (𝐾 ∈ ℤ → (𝐾 ∈ {𝑀} ↔ 𝐾 = 𝑀))
1514orbi1d 791 . . 3 (𝐾 ∈ ℤ → ((𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
1613, 15sylan9bb 462 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
172, 9, 16pm5.21nd 916 1 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2146  cun 3125  {csn 3589  cfv 5208  (class class class)co 5865  1c1 7787   + caddc 7789  cz 9226  cuz 9501  ...cfz 9979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-fz 9980
This theorem is referenced by:  bcpasc  10714  prmdiv  12202
  Copyright terms: Public domain W3C validator