![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzp12 | GIF version |
Description: Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.) |
Ref | Expression |
---|---|
elfzp12 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 10028 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
2 | 1 | anim2i 342 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ)) |
3 | eluzel2 9536 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
4 | eleq1 2240 | . . . . 5 ⊢ (𝐾 = 𝑀 → (𝐾 ∈ ℤ ↔ 𝑀 ∈ ℤ)) | |
5 | 3, 4 | syl5ibrcom 157 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 = 𝑀 → 𝐾 ∈ ℤ)) |
6 | 5 | imdistani 445 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 = 𝑀) → (𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ)) |
7 | elfzelz 10028 | . . . 4 ⊢ (𝐾 ∈ ((𝑀 + 1)...𝑁) → 𝐾 ∈ ℤ) | |
8 | 7 | anim2i 342 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ((𝑀 + 1)...𝑁)) → (𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ)) |
9 | 6, 8 | jaodan 797 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))) → (𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ)) |
10 | fzpred 10073 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) | |
11 | 10 | eleq2d 2247 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ ({𝑀} ∪ ((𝑀 + 1)...𝑁)))) |
12 | elun 3278 | . . . 4 ⊢ (𝐾 ∈ ({𝑀} ∪ ((𝑀 + 1)...𝑁)) ↔ (𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁))) | |
13 | 11, 12 | bitrdi 196 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
14 | elsng 3609 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ {𝑀} ↔ 𝐾 = 𝑀)) | |
15 | 14 | orbi1d 791 | . . 3 ⊢ (𝐾 ∈ ℤ → ((𝐾 ∈ {𝑀} ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
16 | 13, 15 | sylan9bb 462 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
17 | 2, 9, 16 | pm5.21nd 916 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ∪ cun 3129 {csn 3594 ‘cfv 5218 (class class class)co 5878 1c1 7815 + caddc 7817 ℤcz 9256 ℤ≥cuz 9531 ...cfz 10011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 df-uz 9532 df-fz 10012 |
This theorem is referenced by: bcpasc 10749 prmdiv 12238 lgseisenlem1 14590 |
Copyright terms: Public domain | W3C validator |