ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnp2m GIF version

Theorem cncnp2m 14551
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.)
Hypotheses
Ref Expression
cncnp.1 𝑋 = 𝐽
cncnp.2 𝑌 = 𝐾
Assertion
Ref Expression
cncnp2m ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑦,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐹(𝑦)   𝐽(𝑦)   𝐾(𝑦)   𝑌(𝑦)

Proof of Theorem cncnp2m
StepHypRef Expression
1 cntop1 14521 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 cncnp.1 . . . . . 6 𝑋 = 𝐽
32toptopon 14338 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
41, 3sylib 122 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋))
5 cntop2 14522 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
6 cncnp.2 . . . . . 6 𝑌 = 𝐾
76toptopon 14338 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
85, 7sylib 122 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌))
92, 6cnf 14524 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
104, 8, 9jca31 309 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
1110adantl 277 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
123biimpi 120 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
13123ad2ant1 1020 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1413adantr 276 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
157biimpi 120 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
16153ad2ant2 1021 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → 𝐾 ∈ (TopOn‘𝑌))
1716adantr 276 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐾 ∈ (TopOn‘𝑌))
18 r19.2m 3538 . . . . . . 7 ((∃𝑦 𝑦𝑋 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
1918ex 115 . . . . . 6 (∃𝑦 𝑦𝑋 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
20193ad2ant3 1022 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
21 cnpf2 14527 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐹:𝑋𝑌)
22213expia 1207 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2322rexlimdvw 2618 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2413, 16, 23syl2anc 411 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2520, 24syld 45 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2625imp 124 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐹:𝑋𝑌)
2714, 17, 26jca31 309 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
28 cncnp 14550 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
2928baibd 924 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
3011, 27, 29pm5.21nd 917 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476   cuni 3840  wf 5255  cfv 5259  (class class class)co 5925  Topctop 14317  TopOnctopon 14330   Cn ccn 14505   CnP ccnp 14506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-topgen 12962  df-top 14318  df-topon 14331  df-cn 14508  df-cnp 14509
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator