ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnp2m GIF version

Theorem cncnp2m 14913
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.)
Hypotheses
Ref Expression
cncnp.1 𝑋 = 𝐽
cncnp.2 𝑌 = 𝐾
Assertion
Ref Expression
cncnp2m ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑦,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐹(𝑦)   𝐽(𝑦)   𝐾(𝑦)   𝑌(𝑦)

Proof of Theorem cncnp2m
StepHypRef Expression
1 cntop1 14883 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 cncnp.1 . . . . . 6 𝑋 = 𝐽
32toptopon 14700 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
41, 3sylib 122 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋))
5 cntop2 14884 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
6 cncnp.2 . . . . . 6 𝑌 = 𝐾
76toptopon 14700 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
85, 7sylib 122 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌))
92, 6cnf 14886 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
104, 8, 9jca31 309 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
1110adantl 277 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
123biimpi 120 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
13123ad2ant1 1042 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1413adantr 276 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
157biimpi 120 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
16153ad2ant2 1043 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → 𝐾 ∈ (TopOn‘𝑌))
1716adantr 276 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐾 ∈ (TopOn‘𝑌))
18 r19.2m 3578 . . . . . . 7 ((∃𝑦 𝑦𝑋 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
1918ex 115 . . . . . 6 (∃𝑦 𝑦𝑋 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
20193ad2ant3 1044 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
21 cnpf2 14889 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐹:𝑋𝑌)
22213expia 1229 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2322rexlimdvw 2652 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2413, 16, 23syl2anc 411 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2520, 24syld 45 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2625imp 124 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐹:𝑋𝑌)
2714, 17, 26jca31 309 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
28 cncnp 14912 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
2928baibd 928 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
3011, 27, 29pm5.21nd 921 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509   cuni 3888  wf 5314  cfv 5318  (class class class)co 6007  Topctop 14679  TopOnctopon 14692   Cn ccn 14867   CnP ccnp 14868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-topgen 13301  df-top 14680  df-topon 14693  df-cn 14870  df-cnp 14871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator