ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnp2m GIF version

Theorem cncnp2m 14410
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.)
Hypotheses
Ref Expression
cncnp.1 𝑋 = 𝐽
cncnp.2 𝑌 = 𝐾
Assertion
Ref Expression
cncnp2m ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑦,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐹(𝑦)   𝐽(𝑦)   𝐾(𝑦)   𝑌(𝑦)

Proof of Theorem cncnp2m
StepHypRef Expression
1 cntop1 14380 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 cncnp.1 . . . . . 6 𝑋 = 𝐽
32toptopon 14197 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
41, 3sylib 122 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋))
5 cntop2 14381 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
6 cncnp.2 . . . . . 6 𝑌 = 𝐾
76toptopon 14197 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
85, 7sylib 122 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌))
92, 6cnf 14383 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
104, 8, 9jca31 309 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
1110adantl 277 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
123biimpi 120 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
13123ad2ant1 1020 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1413adantr 276 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
157biimpi 120 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
16153ad2ant2 1021 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → 𝐾 ∈ (TopOn‘𝑌))
1716adantr 276 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐾 ∈ (TopOn‘𝑌))
18 r19.2m 3534 . . . . . . 7 ((∃𝑦 𝑦𝑋 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
1918ex 115 . . . . . 6 (∃𝑦 𝑦𝑋 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
20193ad2ant3 1022 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
21 cnpf2 14386 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐹:𝑋𝑌)
22213expia 1207 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2322rexlimdvw 2615 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2413, 16, 23syl2anc 411 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2520, 24syld 45 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2625imp 124 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐹:𝑋𝑌)
2714, 17, 26jca31 309 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
28 cncnp 14409 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
2928baibd 924 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
3011, 27, 29pm5.21nd 917 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473   cuni 3836  wf 5251  cfv 5255  (class class class)co 5919  Topctop 14176  TopOnctopon 14189   Cn ccn 14364   CnP ccnp 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-topgen 12874  df-top 14177  df-topon 14190  df-cn 14367  df-cnp 14368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator