ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnp2m GIF version

Theorem cncnp2m 14747
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.)
Hypotheses
Ref Expression
cncnp.1 𝑋 = 𝐽
cncnp.2 𝑌 = 𝐾
Assertion
Ref Expression
cncnp2m ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑦,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐹(𝑦)   𝐽(𝑦)   𝐾(𝑦)   𝑌(𝑦)

Proof of Theorem cncnp2m
StepHypRef Expression
1 cntop1 14717 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 cncnp.1 . . . . . 6 𝑋 = 𝐽
32toptopon 14534 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
41, 3sylib 122 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋))
5 cntop2 14718 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
6 cncnp.2 . . . . . 6 𝑌 = 𝐾
76toptopon 14534 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
85, 7sylib 122 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌))
92, 6cnf 14720 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌)
104, 8, 9jca31 309 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
1110adantl 277 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
123biimpi 120 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
13123ad2ant1 1021 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1413adantr 276 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
157biimpi 120 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
16153ad2ant2 1022 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → 𝐾 ∈ (TopOn‘𝑌))
1716adantr 276 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐾 ∈ (TopOn‘𝑌))
18 r19.2m 3548 . . . . . . 7 ((∃𝑦 𝑦𝑋 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
1918ex 115 . . . . . 6 (∃𝑦 𝑦𝑋 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
20193ad2ant3 1023 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
21 cnpf2 14723 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐹:𝑋𝑌)
22213expia 1208 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2322rexlimdvw 2628 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2413, 16, 23syl2anc 411 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∃𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2520, 24syld 45 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋𝑌))
2625imp 124 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐹:𝑋𝑌)
2714, 17, 26jca31 309 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
28 cncnp 14746 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
2928baibd 925 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
3011, 27, 29pm5.21nd 918 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486   cuni 3852  wf 5272  cfv 5276  (class class class)co 5951  Topctop 14513  TopOnctopon 14526   Cn ccn 14701   CnP ccnp 14702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-topgen 13136  df-top 14514  df-topon 14527  df-cn 14704  df-cnp 14705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator