Proof of Theorem cncnp2m
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cntop1 14437 | 
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | 
| 2 |   | cncnp.1 | 
. . . . . 6
⊢ 𝑋 = ∪
𝐽 | 
| 3 | 2 | toptopon 14254 | 
. . . . 5
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | 
| 4 | 1, 3 | sylib 122 | 
. . . 4
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 5 |   | cntop2 14438 | 
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | 
| 6 |   | cncnp.2 | 
. . . . . 6
⊢ 𝑌 = ∪
𝐾 | 
| 7 | 6 | toptopon 14254 | 
. . . . 5
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) | 
| 8 | 5, 7 | sylib 122 | 
. . . 4
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 9 | 2, 6 | cnf 14440 | 
. . . 4
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) | 
| 10 | 4, 8, 9 | jca31 309 | 
. . 3
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) | 
| 11 | 10 | adantl 277 | 
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) | 
| 12 | 3 | biimpi 120 | 
. . . . 5
⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋)) | 
| 13 | 12 | 3ad2ant1 1020 | 
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 14 | 13 | adantr 276 | 
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 15 | 7 | biimpi 120 | 
. . . . 5
⊢ (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌)) | 
| 16 | 15 | 3ad2ant2 1021 | 
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 17 | 16 | adantr 276 | 
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 18 |   | r19.2m 3537 | 
. . . . . . 7
⊢
((∃𝑦 𝑦 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) | 
| 19 | 18 | ex 115 | 
. . . . . 6
⊢
(∃𝑦 𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) | 
| 20 | 19 | 3ad2ant3 1022 | 
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) | 
| 21 |   | cnpf2 14443 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐹:𝑋⟶𝑌) | 
| 22 | 21 | 3expia 1207 | 
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋⟶𝑌)) | 
| 23 | 22 | rexlimdvw 2618 | 
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋⟶𝑌)) | 
| 24 | 13, 16, 23 | syl2anc 411 | 
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → (∃𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋⟶𝑌)) | 
| 25 | 20, 24 | syld 45 | 
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → 𝐹:𝑋⟶𝑌)) | 
| 26 | 25 | imp 124 | 
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → 𝐹:𝑋⟶𝑌) | 
| 27 | 14, 17, 26 | jca31 309 | 
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) → ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌)) | 
| 28 |   | cncnp 14466 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) | 
| 29 | 28 | baibd 924 | 
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) | 
| 30 | 11, 27, 29 | pm5.21nd 917 | 
1
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |