ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg2 GIF version

Theorem eltg2 14692
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦

Proof of Theorem eltg2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgval2 14690 . . 3 (𝐵𝑉 → (topGen‘𝐵) = {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))})
21eleq2d 2279 . 2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))}))
3 elex 2791 . . . 4 (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} → 𝐴 ∈ V)
43adantl 277 . . 3 ((𝐵𝑉𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))}) → 𝐴 ∈ V)
5 uniexg 4507 . . . . . 6 (𝐵𝑉 𝐵 ∈ V)
6 ssexg 4202 . . . . . 6 ((𝐴 𝐵 𝐵 ∈ V) → 𝐴 ∈ V)
75, 6sylan2 286 . . . . 5 ((𝐴 𝐵𝐵𝑉) → 𝐴 ∈ V)
87ancoms 268 . . . 4 ((𝐵𝑉𝐴 𝐵) → 𝐴 ∈ V)
98adantrr 479 . . 3 ((𝐵𝑉 ∧ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))) → 𝐴 ∈ V)
10 sseq1 3227 . . . . 5 (𝑧 = 𝐴 → (𝑧 𝐵𝐴 𝐵))
11 sseq2 3228 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
1211anbi2d 464 . . . . . . 7 (𝑧 = 𝐴 → ((𝑥𝑦𝑦𝑧) ↔ (𝑥𝑦𝑦𝐴)))
1312rexbidv 2511 . . . . . 6 (𝑧 = 𝐴 → (∃𝑦𝐵 (𝑥𝑦𝑦𝑧) ↔ ∃𝑦𝐵 (𝑥𝑦𝑦𝐴)))
1413raleqbi1dv 2720 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
1510, 14anbi12d 473 . . . 4 (𝑧 = 𝐴 → ((𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧)) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
1615elabg 2929 . . 3 (𝐴 ∈ V → (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
174, 9, 16pm5.21nd 920 . 2 (𝐵𝑉 → (𝐴 ∈ {𝑧 ∣ (𝑧 𝐵 ∧ ∀𝑥𝑧𝑦𝐵 (𝑥𝑦𝑦𝑧))} ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
182, 17bitrd 188 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  {cab 2195  wral 2488  wrex 2489  Vcvv 2779  wss 3177   cuni 3867  cfv 5294  topGenctg 13253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-topgen 13259
This theorem is referenced by:  eltg2b  14693  tg1  14698  tgcl  14703  elmopn  15085  xmettx  15149
  Copyright terms: Public domain W3C validator