Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzrev3 | GIF version |
Description: The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
Ref | Expression |
---|---|
fzrev3 | ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) | |
2 | elfzel1 9922 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
3 | 2 | adantl 275 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
4 | elfzel2 9921 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
5 | 4 | adantl 275 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ) |
6 | 1, 3, 5 | 3jca 1162 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
7 | simpl 108 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) | |
8 | elfzel1 9922 | . . . 4 ⊢ (((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
9 | 8 | adantl 275 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
10 | elfzel2 9921 | . . . 4 ⊢ (((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
11 | 10 | adantl 275 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ) |
12 | 7, 9, 11 | 3jca 1162 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
13 | zcn 9167 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
14 | zcn 9167 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
15 | pncan 8076 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) | |
16 | pncan2 8077 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) | |
17 | 15, 16 | oveq12d 5839 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁)) |
18 | 13, 14, 17 | syl2an 287 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁)) |
19 | 18 | eleq2d 2227 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ 𝐾 ∈ (𝑀...𝑁))) |
20 | 19 | 3adant1 1000 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ 𝐾 ∈ (𝑀...𝑁))) |
21 | 3simpc 981 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
22 | zaddcl 9202 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | |
23 | 22 | 3adant1 1000 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
24 | simp1 982 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) | |
25 | fzrev 9981 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) | |
26 | 21, 23, 24, 25 | syl12anc 1218 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
27 | 20, 26 | bitr3d 189 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
28 | 6, 12, 27 | pm5.21nd 902 | 1 ⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 (class class class)co 5821 ℂcc 7725 + caddc 7730 − cmin 8041 ℤcz 9162 ...cfz 9907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7818 ax-resscn 7819 ax-1cn 7820 ax-1re 7821 ax-icn 7822 ax-addcl 7823 ax-addrcl 7824 ax-mulcl 7825 ax-addcom 7827 ax-addass 7829 ax-distr 7831 ax-i2m1 7832 ax-0lt1 7833 ax-0id 7835 ax-rnegex 7836 ax-cnre 7838 ax-pre-ltirr 7839 ax-pre-ltwlin 7840 ax-pre-lttrn 7841 ax-pre-ltadd 7843 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7909 df-mnf 7910 df-xr 7911 df-ltxr 7912 df-le 7913 df-sub 8043 df-neg 8044 df-inn 8829 df-n0 9086 df-z 9163 df-uz 9435 df-fz 9908 |
This theorem is referenced by: fzrev3i 9985 |
Copyright terms: Public domain | W3C validator |