ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev3 GIF version

Theorem fzrev3 10156
Description: The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
Assertion
Ref Expression
fzrev3 (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)))

Proof of Theorem fzrev3
StepHypRef Expression
1 simpl 109 . . 3 ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
2 elfzel1 10093 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
32adantl 277 . . 3 ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
4 elfzel2 10092 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
54adantl 277 . . 3 ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ)
61, 3, 53jca 1179 . 2 ((𝐾 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 simpl 109 . . 3 ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
8 elfzel1 10093 . . . 4 (((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
98adantl 277 . . 3 ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
10 elfzel2 10092 . . . 4 (((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
1110adantl 277 . . 3 ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → 𝑁 ∈ ℤ)
127, 9, 113jca 1179 . 2 ((𝐾 ∈ ℤ ∧ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
13 zcn 9325 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 zcn 9325 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
15 pncan 8227 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
16 pncan2 8228 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
1715, 16oveq12d 5937 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁))
1813, 14, 17syl2an 289 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁))
1918eleq2d 2263 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ 𝐾 ∈ (𝑀...𝑁)))
20193adant1 1017 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ 𝐾 ∈ (𝑀...𝑁)))
21 3simpc 998 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
22 zaddcl 9360 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
23223adant1 1017 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
24 simp1 999 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
25 fzrev 10153 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑀 + 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)))
2621, 23, 24, 25syl12anc 1247 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)))
2720, 26bitr3d 190 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)))
286, 12, 27pm5.21nd 917 1 (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  (class class class)co 5919  cc 7872   + caddc 7877  cmin 8192  cz 9320  ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  fzrev3i  10157
  Copyright terms: Public domain W3C validator