![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ideqg | GIF version |
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ideqg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 4757 | . . . . 5 ⊢ Rel I | |
2 | 1 | brrelex1i 4670 | . . . 4 ⊢ (𝐴 I 𝐵 → 𝐴 ∈ V) |
3 | 2 | adantl 277 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵) → 𝐴 ∈ V) |
4 | simpl 109 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵) → 𝐵 ∈ 𝑉) | |
5 | 3, 4 | jca 306 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
6 | eleq1 2240 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
7 | 6 | biimparc 299 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
8 | elex 2749 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) |
10 | simpl 109 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑉) | |
11 | 9, 10 | jca 306 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
12 | eqeq1 2184 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
13 | eqeq2 2187 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
14 | df-id 4294 | . . 3 ⊢ I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} | |
15 | 12, 13, 14 | brabg 4270 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
16 | 5, 11, 15 | pm5.21nd 916 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2738 class class class wbr 4004 I cid 4289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 |
This theorem is referenced by: ideq 4780 ididg 4781 poleloe 5029 |
Copyright terms: Public domain | W3C validator |