| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ideqg | GIF version | ||
| Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ideqg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 4796 | . . . . 5 ⊢ Rel I | |
| 2 | 1 | brrelex1i 4707 | . . . 4 ⊢ (𝐴 I 𝐵 → 𝐴 ∈ V) |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵) → 𝐴 ∈ V) |
| 4 | simpl 109 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵) → 𝐵 ∈ 𝑉) | |
| 5 | 3, 4 | jca 306 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
| 6 | eleq1 2259 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
| 7 | 6 | biimparc 299 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑉) |
| 8 | elex 2774 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) |
| 10 | simpl 109 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑉) | |
| 11 | 9, 10 | jca 306 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
| 12 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 13 | eqeq2 2206 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 14 | df-id 4329 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 15 | 12, 13, 14 | brabg 4304 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| 16 | 5, 11, 15 | pm5.21nd 917 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 class class class wbr 4034 I cid 4324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 |
| This theorem is referenced by: ideq 4819 ididg 4820 poleloe 5070 |
| Copyright terms: Public domain | W3C validator |