ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ideqg GIF version

Theorem ideqg 4817
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem ideqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4795 . . . . 5 Rel I
21brrelex1i 4706 . . . 4 (𝐴 I 𝐵𝐴 ∈ V)
32adantl 277 . . 3 ((𝐵𝑉𝐴 I 𝐵) → 𝐴 ∈ V)
4 simpl 109 . . 3 ((𝐵𝑉𝐴 I 𝐵) → 𝐵𝑉)
53, 4jca 306 . 2 ((𝐵𝑉𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
6 eleq1 2259 . . . . 5 (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉))
76biimparc 299 . . . 4 ((𝐵𝑉𝐴 = 𝐵) → 𝐴𝑉)
8 elex 2774 . . . 4 (𝐴𝑉𝐴 ∈ V)
97, 8syl 14 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐴 ∈ V)
10 simpl 109 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐵𝑉)
119, 10jca 306 . 2 ((𝐵𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
12 eqeq1 2203 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
13 eqeq2 2206 . . 3 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
14 df-id 4328 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1512, 13, 14brabg 4303 . 2 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 I 𝐵𝐴 = 𝐵))
165, 11, 15pm5.21nd 917 1 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763   class class class wbr 4033   I cid 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670
This theorem is referenced by:  ideq  4818  ididg  4819  poleloe  5069
  Copyright terms: Public domain W3C validator