ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ideqg GIF version

Theorem ideqg 4618
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))

Proof of Theorem ideqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4596 . . . . 5 Rel I
21brrelex1i 4510 . . . 4 (𝐴 I 𝐵𝐴 ∈ V)
32adantl 272 . . 3 ((𝐵𝑉𝐴 I 𝐵) → 𝐴 ∈ V)
4 simpl 108 . . 3 ((𝐵𝑉𝐴 I 𝐵) → 𝐵𝑉)
53, 4jca 301 . 2 ((𝐵𝑉𝐴 I 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
6 eleq1 2157 . . . . 5 (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉))
76biimparc 294 . . . 4 ((𝐵𝑉𝐴 = 𝐵) → 𝐴𝑉)
8 elex 2644 . . . 4 (𝐴𝑉𝐴 ∈ V)
97, 8syl 14 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐴 ∈ V)
10 simpl 108 . . 3 ((𝐵𝑉𝐴 = 𝐵) → 𝐵𝑉)
119, 10jca 301 . 2 ((𝐵𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
12 eqeq1 2101 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
13 eqeq2 2104 . . 3 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
14 df-id 4144 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
1512, 13, 14brabg 4120 . 2 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 I 𝐵𝐴 = 𝐵))
165, 11, 15pm5.21nd 866 1 (𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445  Vcvv 2633   class class class wbr 3867   I cid 4139
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474
This theorem is referenced by:  ideq  4619  ididg  4620  poleloe  4864
  Copyright terms: Public domain W3C validator