ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgval GIF version

Theorem eqgval 13746
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgval.x 𝑋 = (Base‘𝐺)
eqgval.n 𝑁 = (invg𝐺)
eqgval.p + = (+g𝐺)
eqgval.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgval ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))

Proof of Theorem eqgval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.x . . . 4 𝑋 = (Base‘𝐺)
2 eqgval.n . . . 4 𝑁 = (invg𝐺)
3 eqgval.p . . . 4 + = (+g𝐺)
4 eqgval.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
51, 2, 3, 4eqgfval 13745 . . 3 ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
65breqd 4093 . 2 ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵))
7 brabv 4846 . . . 4 (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
87adantl 277 . . 3 (((𝐺𝑉𝑆𝑋) ∧ 𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 simpr1 1027 . . . . 5 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐴𝑋)
109elexd 2813 . . . 4 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐴 ∈ V)
11 simpr2 1028 . . . . 5 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐵𝑋)
1211elexd 2813 . . . 4 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐵 ∈ V)
1310, 12jca 306 . . 3 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
14 vex 2802 . . . . . . . 8 𝑥 ∈ V
15 vex 2802 . . . . . . . 8 𝑦 ∈ V
1614, 15prss 3823 . . . . . . 7 ((𝑥𝑋𝑦𝑋) ↔ {𝑥, 𝑦} ⊆ 𝑋)
17 eleq1 2292 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑋𝐴𝑋))
18 eleq1 2292 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑋𝐵𝑋))
1917, 18bi2anan9 608 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑋𝑦𝑋) ↔ (𝐴𝑋𝐵𝑋)))
2016, 19bitr3id 194 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ({𝑥, 𝑦} ⊆ 𝑋 ↔ (𝐴𝑋𝐵𝑋)))
21 fveq2 5623 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
22 id 19 . . . . . . . 8 (𝑦 = 𝐵𝑦 = 𝐵)
2321, 22oveqan12d 6013 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑁𝑥) + 𝑦) = ((𝑁𝐴) + 𝐵))
2423eleq1d 2298 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑁𝑥) + 𝑦) ∈ 𝑆 ↔ ((𝑁𝐴) + 𝐵) ∈ 𝑆))
2520, 24anbi12d 473 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
26 df-3an 1004 . . . . 5 ((𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆))
2725, 26bitr4di 198 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
28 eqid 2229 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}
2927, 28brabga 4351 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
308, 13, 29pm5.21nd 921 . 2 ((𝐺𝑉𝑆𝑋) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
316, 30bitrd 188 1 ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  {cpr 3667   class class class wbr 4082  {copab 4143  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  invgcminusg 13520   ~QG cqg 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-inn 9099  df-ndx 13021  df-slot 13022  df-base 13024  df-eqg 13695
This theorem is referenced by:  eqger  13747  eqglact  13748  eqgid  13749  eqgcpbl  13751  eqgabl  13853
  Copyright terms: Public domain W3C validator