ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgval GIF version

Theorem eqgval 13296
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgval.x 𝑋 = (Base‘𝐺)
eqgval.n 𝑁 = (invg𝐺)
eqgval.p + = (+g𝐺)
eqgval.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgval ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))

Proof of Theorem eqgval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.x . . . 4 𝑋 = (Base‘𝐺)
2 eqgval.n . . . 4 𝑁 = (invg𝐺)
3 eqgval.p . . . 4 + = (+g𝐺)
4 eqgval.r . . . 4 𝑅 = (𝐺 ~QG 𝑆)
51, 2, 3, 4eqgfval 13295 . . 3 ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
65breqd 4041 . 2 ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵))
7 brabv 4790 . . . 4 (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
87adantl 277 . . 3 (((𝐺𝑉𝑆𝑋) ∧ 𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 simpr1 1005 . . . . 5 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐴𝑋)
109elexd 2773 . . . 4 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐴 ∈ V)
11 simpr2 1006 . . . . 5 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐵𝑋)
1211elexd 2773 . . . 4 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → 𝐵 ∈ V)
1310, 12jca 306 . . 3 (((𝐺𝑉𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
14 vex 2763 . . . . . . . 8 𝑥 ∈ V
15 vex 2763 . . . . . . . 8 𝑦 ∈ V
1614, 15prss 3775 . . . . . . 7 ((𝑥𝑋𝑦𝑋) ↔ {𝑥, 𝑦} ⊆ 𝑋)
17 eleq1 2256 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑋𝐴𝑋))
18 eleq1 2256 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑋𝐵𝑋))
1917, 18bi2anan9 606 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑋𝑦𝑋) ↔ (𝐴𝑋𝐵𝑋)))
2016, 19bitr3id 194 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ({𝑥, 𝑦} ⊆ 𝑋 ↔ (𝐴𝑋𝐵𝑋)))
21 fveq2 5555 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
22 id 19 . . . . . . . 8 (𝑦 = 𝐵𝑦 = 𝐵)
2321, 22oveqan12d 5938 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑁𝑥) + 𝑦) = ((𝑁𝐴) + 𝐵))
2423eleq1d 2262 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑁𝑥) + 𝑦) ∈ 𝑆 ↔ ((𝑁𝐴) + 𝐵) ∈ 𝑆))
2520, 24anbi12d 473 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
26 df-3an 982 . . . . 5 ((𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆))
2725, 26bitr4di 198 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆) ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
28 eqid 2193 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}
2927, 28brabga 4295 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
308, 13, 29pm5.21nd 917 . 2 ((𝐺𝑉𝑆𝑋) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)}𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
316, 30bitrd 188 1 ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  wss 3154  {cpr 3620   class class class wbr 4030  {copab 4090  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  invgcminusg 13076   ~QG cqg 13242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-eqg 13245
This theorem is referenced by:  eqger  13297  eqglact  13298  eqgid  13299  eqgcpbl  13301  eqgabl  13403
  Copyright terms: Public domain W3C validator