| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltg | GIF version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval 13261 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | |
| 2 | 1 | eleq2d 2279 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)})) |
| 3 | elex 2791 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} → 𝐴 ∈ V) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) → 𝐴 ∈ V) |
| 5 | inex1g 4199 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
| 6 | uniexg 4507 | . . . . . 6 ⊢ ((𝐵 ∩ 𝒫 𝐴) ∈ V → ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
| 7 | 5, 6 | syl 14 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) |
| 8 | ssexg 4202 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴) ∧ ∪ (𝐵 ∩ 𝒫 𝐴) ∈ V) → 𝐴 ∈ V) | |
| 9 | 7, 8 | sylan2 286 | . . . 4 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴) ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
| 10 | 9 | ancoms 268 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴)) → 𝐴 ∈ V) |
| 11 | id 19 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 12 | pweq 3632 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 13 | 12 | ineq2d 3385 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴)) |
| 14 | 13 | unieqd 3878 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝐴)) |
| 15 | 11, 14 | sseq12d 3235 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 16 | 15 | elabg 2929 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 17 | 4, 10, 16 | pm5.21nd 920 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 18 | 2, 17 | bitrd 188 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 {cab 2195 Vcvv 2779 ∩ cin 3176 ⊆ wss 3177 𝒫 cpw 3629 ∪ cuni 3867 ‘cfv 5294 topGenctg 13253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-topgen 13259 |
| This theorem is referenced by: eltg4i 14694 eltg3i 14695 bastg 14700 tgss 14702 eltop 14708 |
| Copyright terms: Public domain | W3C validator |