ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg GIF version

Theorem eltg 14568
Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))

Proof of Theorem eltg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tgval 13138 . . 3 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
21eleq2d 2276 . 2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)}))
3 elex 2784 . . . 4 (𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} → 𝐴 ∈ V)
43adantl 277 . . 3 ((𝐵𝑉𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)}) → 𝐴 ∈ V)
5 inex1g 4184 . . . . . 6 (𝐵𝑉 → (𝐵 ∩ 𝒫 𝐴) ∈ V)
6 uniexg 4490 . . . . . 6 ((𝐵 ∩ 𝒫 𝐴) ∈ V → (𝐵 ∩ 𝒫 𝐴) ∈ V)
75, 6syl 14 . . . . 5 (𝐵𝑉 (𝐵 ∩ 𝒫 𝐴) ∈ V)
8 ssexg 4187 . . . . 5 ((𝐴 (𝐵 ∩ 𝒫 𝐴) ∧ (𝐵 ∩ 𝒫 𝐴) ∈ V) → 𝐴 ∈ V)
97, 8sylan2 286 . . . 4 ((𝐴 (𝐵 ∩ 𝒫 𝐴) ∧ 𝐵𝑉) → 𝐴 ∈ V)
109ancoms 268 . . 3 ((𝐵𝑉𝐴 (𝐵 ∩ 𝒫 𝐴)) → 𝐴 ∈ V)
11 id 19 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
12 pweq 3620 . . . . . . 7 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
1312ineq2d 3375 . . . . . 6 (𝑥 = 𝐴 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴))
1413unieqd 3863 . . . . 5 (𝑥 = 𝐴 (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴))
1511, 14sseq12d 3225 . . . 4 (𝑥 = 𝐴 → (𝑥 (𝐵 ∩ 𝒫 𝑥) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
1615elabg 2920 . . 3 (𝐴 ∈ V → (𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
174, 10, 16pm5.21nd 918 . 2 (𝐵𝑉 → (𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
182, 17bitrd 188 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  cin 3166  wss 3167  𝒫 cpw 3617   cuni 3852  cfv 5276  topGenctg 13130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-topgen 13136
This theorem is referenced by:  eltg4i  14571  eltg3i  14572  bastg  14577  tgss  14579  eltop  14585
  Copyright terms: Public domain W3C validator