ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg GIF version

Theorem eltg 12846
Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))

Proof of Theorem eltg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tgval 12843 . . 3 (𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
21eleq2d 2240 . 2 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)}))
3 elex 2741 . . . 4 (𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} → 𝐴 ∈ V)
43adantl 275 . . 3 ((𝐵𝑉𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)}) → 𝐴 ∈ V)
5 inex1g 4125 . . . . . 6 (𝐵𝑉 → (𝐵 ∩ 𝒫 𝐴) ∈ V)
6 uniexg 4424 . . . . . 6 ((𝐵 ∩ 𝒫 𝐴) ∈ V → (𝐵 ∩ 𝒫 𝐴) ∈ V)
75, 6syl 14 . . . . 5 (𝐵𝑉 (𝐵 ∩ 𝒫 𝐴) ∈ V)
8 ssexg 4128 . . . . 5 ((𝐴 (𝐵 ∩ 𝒫 𝐴) ∧ (𝐵 ∩ 𝒫 𝐴) ∈ V) → 𝐴 ∈ V)
97, 8sylan2 284 . . . 4 ((𝐴 (𝐵 ∩ 𝒫 𝐴) ∧ 𝐵𝑉) → 𝐴 ∈ V)
109ancoms 266 . . 3 ((𝐵𝑉𝐴 (𝐵 ∩ 𝒫 𝐴)) → 𝐴 ∈ V)
11 id 19 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
12 pweq 3569 . . . . . . 7 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
1312ineq2d 3328 . . . . . 6 (𝑥 = 𝐴 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴))
1413unieqd 3807 . . . . 5 (𝑥 = 𝐴 (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝐴))
1511, 14sseq12d 3178 . . . 4 (𝑥 = 𝐴 → (𝑥 (𝐵 ∩ 𝒫 𝑥) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
1615elabg 2876 . . 3 (𝐴 ∈ V → (𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
174, 10, 16pm5.21nd 911 . 2 (𝐵𝑉 → (𝐴 ∈ {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)} ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
182, 17bitrd 187 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  {cab 2156  Vcvv 2730  cin 3120  wss 3121  𝒫 cpw 3566   cuni 3796  cfv 5198  topGenctg 12594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-topgen 12600
This theorem is referenced by:  eltg4i  12849  eltg3i  12850  bastg  12855  tgss  12857  eltop  12863
  Copyright terms: Public domain W3C validator