ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxre2 GIF version

Theorem fimaxre2 11370
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre2
Dummy variables 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3202 . . . 4 (𝑤 = ∅ → (𝑤 ⊆ ℝ ↔ ∅ ⊆ ℝ))
2 raleq 2690 . . . . 5 (𝑤 = ∅ → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦 ∈ ∅ 𝑦𝑥))
32rexbidv 2495 . . . 4 (𝑤 = ∅ → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥))
41, 3imbi12d 234 . . 3 (𝑤 = ∅ → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (∅ ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)))
5 sseq1 3202 . . . 4 (𝑤 = 𝑢 → (𝑤 ⊆ ℝ ↔ 𝑢 ⊆ ℝ))
6 raleq 2690 . . . . 5 (𝑤 = 𝑢 → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦𝑢 𝑦𝑥))
76rexbidv 2495 . . . 4 (𝑤 = 𝑢 → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
85, 7imbi12d 234 . . 3 (𝑤 = 𝑢 → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)))
9 sseq1 3202 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → (𝑤 ⊆ ℝ ↔ (𝑢 ∪ {𝑣}) ⊆ ℝ))
10 raleq 2690 . . . . 5 (𝑤 = (𝑢 ∪ {𝑣}) → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥))
1110rexbidv 2495 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥))
129, 11imbi12d 234 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ ((𝑢 ∪ {𝑣}) ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)))
13 sseq1 3202 . . . 4 (𝑤 = 𝐴 → (𝑤 ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
14 raleq 2690 . . . . 5 (𝑤 = 𝐴 → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦𝐴 𝑦𝑥))
1514rexbidv 2495 . . . 4 (𝑤 = 𝐴 → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1613, 15imbi12d 234 . . 3 (𝑤 = 𝐴 → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)))
17 0re 8019 . . . . 5 0 ∈ ℝ
18 ral0 3548 . . . . 5 𝑦 ∈ ∅ 𝑦 ≤ 0
19 breq2 4033 . . . . . . 7 (𝑥 = 0 → (𝑦𝑥𝑦 ≤ 0))
2019ralbidv 2494 . . . . . 6 (𝑥 = 0 → (∀𝑦 ∈ ∅ 𝑦𝑥 ↔ ∀𝑦 ∈ ∅ 𝑦 ≤ 0))
2120rspcev 2864 . . . . 5 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ∅ 𝑦 ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)
2217, 18, 21mp2an 426 . . . 4 𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥
2322a1i 9 . . 3 (∅ ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)
24 unss 3333 . . . . . . . . . 10 ((𝑢 ⊆ ℝ ∧ {𝑣} ⊆ ℝ) ↔ (𝑢 ∪ {𝑣}) ⊆ ℝ)
2524biimpri 133 . . . . . . . . 9 ((𝑢 ∪ {𝑣}) ⊆ ℝ → (𝑢 ⊆ ℝ ∧ {𝑣} ⊆ ℝ))
2625simpld 112 . . . . . . . 8 ((𝑢 ∪ {𝑣}) ⊆ ℝ → 𝑢 ⊆ ℝ)
2726adantl 277 . . . . . . 7 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → 𝑢 ⊆ ℝ)
28 simplr 528 . . . . . . 7 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
2927, 28mpd 13 . . . . . 6 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)
30 breq2 4033 . . . . . . . 8 (𝑥 = 𝑠 → (𝑦𝑥𝑦𝑠))
3130ralbidv 2494 . . . . . . 7 (𝑥 = 𝑠 → (∀𝑦𝑢 𝑦𝑥 ↔ ∀𝑦𝑢 𝑦𝑠))
3231cbvrexv 2727 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥 ↔ ∃𝑠 ∈ ℝ ∀𝑦𝑢 𝑦𝑠)
3329, 32sylib 122 . . . . 5 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑠 ∈ ℝ ∀𝑦𝑢 𝑦𝑠)
34 simprl 529 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑠 ∈ ℝ)
3525simprd 114 . . . . . . . . 9 ((𝑢 ∪ {𝑣}) ⊆ ℝ → {𝑣} ⊆ ℝ)
36 vex 2763 . . . . . . . . . 10 𝑣 ∈ V
3736snss 3753 . . . . . . . . 9 (𝑣 ∈ ℝ ↔ {𝑣} ⊆ ℝ)
3835, 37sylibr 134 . . . . . . . 8 ((𝑢 ∪ {𝑣}) ⊆ ℝ → 𝑣 ∈ ℝ)
3938ad2antlr 489 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑣 ∈ ℝ)
40 maxcl 11354 . . . . . . 7 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
4134, 39, 40syl2anc 411 . . . . . 6 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
42 nfv 1539 . . . . . . . . . . 11 𝑦 𝑢 ∈ Fin
43 nfv 1539 . . . . . . . . . . . 12 𝑦 𝑢 ⊆ ℝ
44 nfcv 2336 . . . . . . . . . . . . 13 𝑦
45 nfra1 2525 . . . . . . . . . . . . 13 𝑦𝑦𝑢 𝑦𝑥
4644, 45nfrexw 2533 . . . . . . . . . . . 12 𝑦𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥
4743, 46nfim 1583 . . . . . . . . . . 11 𝑦(𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)
4842, 47nfan 1576 . . . . . . . . . 10 𝑦(𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
49 nfv 1539 . . . . . . . . . 10 𝑦(𝑢 ∪ {𝑣}) ⊆ ℝ
5048, 49nfan 1576 . . . . . . . . 9 𝑦((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ)
51 nfv 1539 . . . . . . . . . 10 𝑦 𝑠 ∈ ℝ
52 nfra1 2525 . . . . . . . . . 10 𝑦𝑦𝑢 𝑦𝑠
5351, 52nfan 1576 . . . . . . . . 9 𝑦(𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)
5450, 53nfan 1576 . . . . . . . 8 𝑦(((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠))
55 simprr 531 . . . . . . . . . . . 12 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 𝑦𝑠)
56 maxle1 11355 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < ))
5734, 39, 56syl2anc 411 . . . . . . . . . . . 12 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < ))
58 r19.27av 2629 . . . . . . . . . . . 12 ((∀𝑦𝑢 𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∀𝑦𝑢 (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
5955, 57, 58syl2anc 411 . . . . . . . . . . 11 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6059r19.21bi 2582 . . . . . . . . . 10 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6127ad2antrr 488 . . . . . . . . . . . 12 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑢 ⊆ ℝ)
62 simpr 110 . . . . . . . . . . . 12 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦𝑢)
6361, 62sseldd 3180 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦 ∈ ℝ)
6434adantr 276 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑠 ∈ ℝ)
6541adantr 276 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
66 letr 8102 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ) → ((𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6763, 64, 65, 66syl3anc 1249 . . . . . . . . . 10 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → ((𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6860, 67mpd 13 . . . . . . . . 9 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
6968ex 115 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → (𝑦𝑢𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7054, 69ralrimi 2565 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
71 maxle2 11356 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < ))
7234, 39, 71syl2anc 411 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < ))
73 breq1 4032 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7473ralsng 3658 . . . . . . . . 9 (𝑣 ∈ ℝ → (∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7539, 74syl 14 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → (∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7672, 75mpbird 167 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
77 ralun 3341 . . . . . . 7 ((∀𝑦𝑢 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ∧ ∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
7870, 76, 77syl2anc 411 . . . . . 6 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
79 breq2 4033 . . . . . . . 8 (𝑥 = sup({𝑠, 𝑣}, ℝ, < ) → (𝑦𝑥𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
8079ralbidv 2494 . . . . . . 7 (𝑥 = sup({𝑠, 𝑣}, ℝ, < ) → (∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
8180rspcev 2864 . . . . . 6 ((sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ ∧ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8241, 78, 81syl2anc 411 . . . . 5 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8333, 82rexlimddv 2616 . . . 4 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8483exp31 364 . . 3 (𝑢 ∈ Fin → ((𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥) → ((𝑢 ∪ {𝑣}) ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)))
854, 8, 12, 16, 23, 84findcard2 6945 . 2 (𝐴 ∈ Fin → (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
8685impcom 125 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  cun 3151  wss 3153  c0 3446  {csn 3618  {cpr 3619   class class class wbr 4029  Fincfn 6794  supcsup 7041  cr 7871  0cc0 7872   < clt 8054  cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-er 6587  df-en 6795  df-fin 6797  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  fsum3cvg3  11539
  Copyright terms: Public domain W3C validator