ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxre2 GIF version

Theorem fimaxre2 11030
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre2
Dummy variables 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3125 . . . 4 (𝑤 = ∅ → (𝑤 ⊆ ℝ ↔ ∅ ⊆ ℝ))
2 raleq 2629 . . . . 5 (𝑤 = ∅ → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦 ∈ ∅ 𝑦𝑥))
32rexbidv 2439 . . . 4 (𝑤 = ∅ → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥))
41, 3imbi12d 233 . . 3 (𝑤 = ∅ → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (∅ ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)))
5 sseq1 3125 . . . 4 (𝑤 = 𝑢 → (𝑤 ⊆ ℝ ↔ 𝑢 ⊆ ℝ))
6 raleq 2629 . . . . 5 (𝑤 = 𝑢 → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦𝑢 𝑦𝑥))
76rexbidv 2439 . . . 4 (𝑤 = 𝑢 → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
85, 7imbi12d 233 . . 3 (𝑤 = 𝑢 → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)))
9 sseq1 3125 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → (𝑤 ⊆ ℝ ↔ (𝑢 ∪ {𝑣}) ⊆ ℝ))
10 raleq 2629 . . . . 5 (𝑤 = (𝑢 ∪ {𝑣}) → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥))
1110rexbidv 2439 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥))
129, 11imbi12d 233 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ ((𝑢 ∪ {𝑣}) ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)))
13 sseq1 3125 . . . 4 (𝑤 = 𝐴 → (𝑤 ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
14 raleq 2629 . . . . 5 (𝑤 = 𝐴 → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦𝐴 𝑦𝑥))
1514rexbidv 2439 . . . 4 (𝑤 = 𝐴 → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1613, 15imbi12d 233 . . 3 (𝑤 = 𝐴 → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)))
17 0re 7790 . . . . 5 0 ∈ ℝ
18 ral0 3469 . . . . 5 𝑦 ∈ ∅ 𝑦 ≤ 0
19 breq2 3941 . . . . . . 7 (𝑥 = 0 → (𝑦𝑥𝑦 ≤ 0))
2019ralbidv 2438 . . . . . 6 (𝑥 = 0 → (∀𝑦 ∈ ∅ 𝑦𝑥 ↔ ∀𝑦 ∈ ∅ 𝑦 ≤ 0))
2120rspcev 2793 . . . . 5 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ∅ 𝑦 ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)
2217, 18, 21mp2an 423 . . . 4 𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥
2322a1i 9 . . 3 (∅ ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)
24 unss 3255 . . . . . . . . . 10 ((𝑢 ⊆ ℝ ∧ {𝑣} ⊆ ℝ) ↔ (𝑢 ∪ {𝑣}) ⊆ ℝ)
2524biimpri 132 . . . . . . . . 9 ((𝑢 ∪ {𝑣}) ⊆ ℝ → (𝑢 ⊆ ℝ ∧ {𝑣} ⊆ ℝ))
2625simpld 111 . . . . . . . 8 ((𝑢 ∪ {𝑣}) ⊆ ℝ → 𝑢 ⊆ ℝ)
2726adantl 275 . . . . . . 7 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → 𝑢 ⊆ ℝ)
28 simplr 520 . . . . . . 7 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
2927, 28mpd 13 . . . . . 6 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)
30 breq2 3941 . . . . . . . 8 (𝑥 = 𝑠 → (𝑦𝑥𝑦𝑠))
3130ralbidv 2438 . . . . . . 7 (𝑥 = 𝑠 → (∀𝑦𝑢 𝑦𝑥 ↔ ∀𝑦𝑢 𝑦𝑠))
3231cbvrexv 2658 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥 ↔ ∃𝑠 ∈ ℝ ∀𝑦𝑢 𝑦𝑠)
3329, 32sylib 121 . . . . 5 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑠 ∈ ℝ ∀𝑦𝑢 𝑦𝑠)
34 simprl 521 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑠 ∈ ℝ)
3525simprd 113 . . . . . . . . 9 ((𝑢 ∪ {𝑣}) ⊆ ℝ → {𝑣} ⊆ ℝ)
36 vex 2692 . . . . . . . . . 10 𝑣 ∈ V
3736snss 3657 . . . . . . . . 9 (𝑣 ∈ ℝ ↔ {𝑣} ⊆ ℝ)
3835, 37sylibr 133 . . . . . . . 8 ((𝑢 ∪ {𝑣}) ⊆ ℝ → 𝑣 ∈ ℝ)
3938ad2antlr 481 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑣 ∈ ℝ)
40 maxcl 11014 . . . . . . 7 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
4134, 39, 40syl2anc 409 . . . . . 6 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
42 nfv 1509 . . . . . . . . . . 11 𝑦 𝑢 ∈ Fin
43 nfv 1509 . . . . . . . . . . . 12 𝑦 𝑢 ⊆ ℝ
44 nfcv 2282 . . . . . . . . . . . . 13 𝑦
45 nfra1 2469 . . . . . . . . . . . . 13 𝑦𝑦𝑢 𝑦𝑥
4644, 45nfrexxy 2475 . . . . . . . . . . . 12 𝑦𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥
4743, 46nfim 1552 . . . . . . . . . . 11 𝑦(𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)
4842, 47nfan 1545 . . . . . . . . . 10 𝑦(𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
49 nfv 1509 . . . . . . . . . 10 𝑦(𝑢 ∪ {𝑣}) ⊆ ℝ
5048, 49nfan 1545 . . . . . . . . 9 𝑦((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ)
51 nfv 1509 . . . . . . . . . 10 𝑦 𝑠 ∈ ℝ
52 nfra1 2469 . . . . . . . . . 10 𝑦𝑦𝑢 𝑦𝑠
5351, 52nfan 1545 . . . . . . . . 9 𝑦(𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)
5450, 53nfan 1545 . . . . . . . 8 𝑦(((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠))
55 simprr 522 . . . . . . . . . . . 12 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 𝑦𝑠)
56 maxle1 11015 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < ))
5734, 39, 56syl2anc 409 . . . . . . . . . . . 12 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < ))
58 r19.27av 2570 . . . . . . . . . . . 12 ((∀𝑦𝑢 𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∀𝑦𝑢 (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
5955, 57, 58syl2anc 409 . . . . . . . . . . 11 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6059r19.21bi 2523 . . . . . . . . . 10 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6127ad2antrr 480 . . . . . . . . . . . 12 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑢 ⊆ ℝ)
62 simpr 109 . . . . . . . . . . . 12 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦𝑢)
6361, 62sseldd 3103 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦 ∈ ℝ)
6434adantr 274 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑠 ∈ ℝ)
6541adantr 274 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
66 letr 7871 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ) → ((𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6763, 64, 65, 66syl3anc 1217 . . . . . . . . . 10 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → ((𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6860, 67mpd 13 . . . . . . . . 9 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
6968ex 114 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → (𝑦𝑢𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7054, 69ralrimi 2506 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
71 maxle2 11016 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < ))
7234, 39, 71syl2anc 409 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < ))
73 breq1 3940 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7473ralsng 3571 . . . . . . . . 9 (𝑣 ∈ ℝ → (∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7539, 74syl 14 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → (∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7672, 75mpbird 166 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
77 ralun 3263 . . . . . . 7 ((∀𝑦𝑢 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ∧ ∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
7870, 76, 77syl2anc 409 . . . . . 6 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
79 breq2 3941 . . . . . . . 8 (𝑥 = sup({𝑠, 𝑣}, ℝ, < ) → (𝑦𝑥𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
8079ralbidv 2438 . . . . . . 7 (𝑥 = sup({𝑠, 𝑣}, ℝ, < ) → (∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
8180rspcev 2793 . . . . . 6 ((sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ ∧ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8241, 78, 81syl2anc 409 . . . . 5 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8333, 82rexlimddv 2557 . . . 4 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8483exp31 362 . . 3 (𝑢 ∈ Fin → ((𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥) → ((𝑢 ∪ {𝑣}) ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)))
854, 8, 12, 16, 23, 84findcard2 6791 . 2 (𝐴 ∈ Fin → (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
8685impcom 124 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wral 2417  wrex 2418  cun 3074  wss 3076  c0 3368  {csn 3532  {cpr 3533   class class class wbr 3937  Fincfn 6642  supcsup 6877  cr 7643  0cc0 7644   < clt 7824  cle 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-er 6437  df-en 6643  df-fin 6645  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  fsum3cvg3  11197
  Copyright terms: Public domain W3C validator