ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxre2 GIF version

Theorem fimaxre2 10991
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre2
Dummy variables 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3115 . . . 4 (𝑤 = ∅ → (𝑤 ⊆ ℝ ↔ ∅ ⊆ ℝ))
2 raleq 2624 . . . . 5 (𝑤 = ∅ → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦 ∈ ∅ 𝑦𝑥))
32rexbidv 2436 . . . 4 (𝑤 = ∅ → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥))
41, 3imbi12d 233 . . 3 (𝑤 = ∅ → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (∅ ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)))
5 sseq1 3115 . . . 4 (𝑤 = 𝑢 → (𝑤 ⊆ ℝ ↔ 𝑢 ⊆ ℝ))
6 raleq 2624 . . . . 5 (𝑤 = 𝑢 → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦𝑢 𝑦𝑥))
76rexbidv 2436 . . . 4 (𝑤 = 𝑢 → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
85, 7imbi12d 233 . . 3 (𝑤 = 𝑢 → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)))
9 sseq1 3115 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → (𝑤 ⊆ ℝ ↔ (𝑢 ∪ {𝑣}) ⊆ ℝ))
10 raleq 2624 . . . . 5 (𝑤 = (𝑢 ∪ {𝑣}) → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥))
1110rexbidv 2436 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥))
129, 11imbi12d 233 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ ((𝑢 ∪ {𝑣}) ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)))
13 sseq1 3115 . . . 4 (𝑤 = 𝐴 → (𝑤 ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
14 raleq 2624 . . . . 5 (𝑤 = 𝐴 → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦𝐴 𝑦𝑥))
1514rexbidv 2436 . . . 4 (𝑤 = 𝐴 → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1613, 15imbi12d 233 . . 3 (𝑤 = 𝐴 → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)))
17 0re 7759 . . . . 5 0 ∈ ℝ
18 ral0 3459 . . . . 5 𝑦 ∈ ∅ 𝑦 ≤ 0
19 breq2 3928 . . . . . . 7 (𝑥 = 0 → (𝑦𝑥𝑦 ≤ 0))
2019ralbidv 2435 . . . . . 6 (𝑥 = 0 → (∀𝑦 ∈ ∅ 𝑦𝑥 ↔ ∀𝑦 ∈ ∅ 𝑦 ≤ 0))
2120rspcev 2784 . . . . 5 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ∅ 𝑦 ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)
2217, 18, 21mp2an 422 . . . 4 𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥
2322a1i 9 . . 3 (∅ ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)
24 unss 3245 . . . . . . . . . 10 ((𝑢 ⊆ ℝ ∧ {𝑣} ⊆ ℝ) ↔ (𝑢 ∪ {𝑣}) ⊆ ℝ)
2524biimpri 132 . . . . . . . . 9 ((𝑢 ∪ {𝑣}) ⊆ ℝ → (𝑢 ⊆ ℝ ∧ {𝑣} ⊆ ℝ))
2625simpld 111 . . . . . . . 8 ((𝑢 ∪ {𝑣}) ⊆ ℝ → 𝑢 ⊆ ℝ)
2726adantl 275 . . . . . . 7 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → 𝑢 ⊆ ℝ)
28 simplr 519 . . . . . . 7 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
2927, 28mpd 13 . . . . . 6 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)
30 breq2 3928 . . . . . . . 8 (𝑥 = 𝑠 → (𝑦𝑥𝑦𝑠))
3130ralbidv 2435 . . . . . . 7 (𝑥 = 𝑠 → (∀𝑦𝑢 𝑦𝑥 ↔ ∀𝑦𝑢 𝑦𝑠))
3231cbvrexv 2653 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥 ↔ ∃𝑠 ∈ ℝ ∀𝑦𝑢 𝑦𝑠)
3329, 32sylib 121 . . . . 5 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑠 ∈ ℝ ∀𝑦𝑢 𝑦𝑠)
34 simprl 520 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑠 ∈ ℝ)
3525simprd 113 . . . . . . . . 9 ((𝑢 ∪ {𝑣}) ⊆ ℝ → {𝑣} ⊆ ℝ)
36 vex 2684 . . . . . . . . . 10 𝑣 ∈ V
3736snss 3644 . . . . . . . . 9 (𝑣 ∈ ℝ ↔ {𝑣} ⊆ ℝ)
3835, 37sylibr 133 . . . . . . . 8 ((𝑢 ∪ {𝑣}) ⊆ ℝ → 𝑣 ∈ ℝ)
3938ad2antlr 480 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑣 ∈ ℝ)
40 maxcl 10975 . . . . . . 7 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
4134, 39, 40syl2anc 408 . . . . . 6 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
42 nfv 1508 . . . . . . . . . . 11 𝑦 𝑢 ∈ Fin
43 nfv 1508 . . . . . . . . . . . 12 𝑦 𝑢 ⊆ ℝ
44 nfcv 2279 . . . . . . . . . . . . 13 𝑦
45 nfra1 2464 . . . . . . . . . . . . 13 𝑦𝑦𝑢 𝑦𝑥
4644, 45nfrexxy 2470 . . . . . . . . . . . 12 𝑦𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥
4743, 46nfim 1551 . . . . . . . . . . 11 𝑦(𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)
4842, 47nfan 1544 . . . . . . . . . 10 𝑦(𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
49 nfv 1508 . . . . . . . . . 10 𝑦(𝑢 ∪ {𝑣}) ⊆ ℝ
5048, 49nfan 1544 . . . . . . . . 9 𝑦((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ)
51 nfv 1508 . . . . . . . . . 10 𝑦 𝑠 ∈ ℝ
52 nfra1 2464 . . . . . . . . . 10 𝑦𝑦𝑢 𝑦𝑠
5351, 52nfan 1544 . . . . . . . . 9 𝑦(𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)
5450, 53nfan 1544 . . . . . . . 8 𝑦(((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠))
55 simprr 521 . . . . . . . . . . . 12 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 𝑦𝑠)
56 maxle1 10976 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < ))
5734, 39, 56syl2anc 408 . . . . . . . . . . . 12 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < ))
58 r19.27av 2565 . . . . . . . . . . . 12 ((∀𝑦𝑢 𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∀𝑦𝑢 (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
5955, 57, 58syl2anc 408 . . . . . . . . . . 11 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6059r19.21bi 2518 . . . . . . . . . 10 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6127ad2antrr 479 . . . . . . . . . . . 12 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑢 ⊆ ℝ)
62 simpr 109 . . . . . . . . . . . 12 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦𝑢)
6361, 62sseldd 3093 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦 ∈ ℝ)
6434adantr 274 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑠 ∈ ℝ)
6541adantr 274 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
66 letr 7840 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ) → ((𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6763, 64, 65, 66syl3anc 1216 . . . . . . . . . 10 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → ((𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6860, 67mpd 13 . . . . . . . . 9 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
6968ex 114 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → (𝑦𝑢𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7054, 69ralrimi 2501 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
71 maxle2 10977 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < ))
7234, 39, 71syl2anc 408 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < ))
73 breq1 3927 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7473ralsng 3559 . . . . . . . . 9 (𝑣 ∈ ℝ → (∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7539, 74syl 14 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → (∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7672, 75mpbird 166 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
77 ralun 3253 . . . . . . 7 ((∀𝑦𝑢 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ∧ ∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
7870, 76, 77syl2anc 408 . . . . . 6 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
79 breq2 3928 . . . . . . . 8 (𝑥 = sup({𝑠, 𝑣}, ℝ, < ) → (𝑦𝑥𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
8079ralbidv 2435 . . . . . . 7 (𝑥 = sup({𝑠, 𝑣}, ℝ, < ) → (∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
8180rspcev 2784 . . . . . 6 ((sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ ∧ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8241, 78, 81syl2anc 408 . . . . 5 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8333, 82rexlimddv 2552 . . . 4 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8483exp31 361 . . 3 (𝑢 ∈ Fin → ((𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥) → ((𝑢 ∪ {𝑣}) ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)))
854, 8, 12, 16, 23, 84findcard2 6776 . 2 (𝐴 ∈ Fin → (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
8685impcom 124 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2414  wrex 2415  cun 3064  wss 3066  c0 3358  {csn 3522  {cpr 3523   class class class wbr 3924  Fincfn 6627  supcsup 6862  cr 7612  0cc0 7613   < clt 7793  cle 7794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-er 6422  df-en 6628  df-fin 6630  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764
This theorem is referenced by:  fsum3cvg3  11158
  Copyright terms: Public domain W3C validator