ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxre2 GIF version

Theorem fimaxre2 11738
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre2
Dummy variables 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3247 . . . 4 (𝑤 = ∅ → (𝑤 ⊆ ℝ ↔ ∅ ⊆ ℝ))
2 raleq 2728 . . . . 5 (𝑤 = ∅ → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦 ∈ ∅ 𝑦𝑥))
32rexbidv 2531 . . . 4 (𝑤 = ∅ → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥))
41, 3imbi12d 234 . . 3 (𝑤 = ∅ → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (∅ ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)))
5 sseq1 3247 . . . 4 (𝑤 = 𝑢 → (𝑤 ⊆ ℝ ↔ 𝑢 ⊆ ℝ))
6 raleq 2728 . . . . 5 (𝑤 = 𝑢 → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦𝑢 𝑦𝑥))
76rexbidv 2531 . . . 4 (𝑤 = 𝑢 → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
85, 7imbi12d 234 . . 3 (𝑤 = 𝑢 → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)))
9 sseq1 3247 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → (𝑤 ⊆ ℝ ↔ (𝑢 ∪ {𝑣}) ⊆ ℝ))
10 raleq 2728 . . . . 5 (𝑤 = (𝑢 ∪ {𝑣}) → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥))
1110rexbidv 2531 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥))
129, 11imbi12d 234 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ ((𝑢 ∪ {𝑣}) ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)))
13 sseq1 3247 . . . 4 (𝑤 = 𝐴 → (𝑤 ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
14 raleq 2728 . . . . 5 (𝑤 = 𝐴 → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦𝐴 𝑦𝑥))
1514rexbidv 2531 . . . 4 (𝑤 = 𝐴 → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1613, 15imbi12d 234 . . 3 (𝑤 = 𝐴 → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)))
17 0re 8146 . . . . 5 0 ∈ ℝ
18 ral0 3593 . . . . 5 𝑦 ∈ ∅ 𝑦 ≤ 0
19 breq2 4087 . . . . . . 7 (𝑥 = 0 → (𝑦𝑥𝑦 ≤ 0))
2019ralbidv 2530 . . . . . 6 (𝑥 = 0 → (∀𝑦 ∈ ∅ 𝑦𝑥 ↔ ∀𝑦 ∈ ∅ 𝑦 ≤ 0))
2120rspcev 2907 . . . . 5 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ∅ 𝑦 ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)
2217, 18, 21mp2an 426 . . . 4 𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥
2322a1i 9 . . 3 (∅ ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)
24 unss 3378 . . . . . . . . . 10 ((𝑢 ⊆ ℝ ∧ {𝑣} ⊆ ℝ) ↔ (𝑢 ∪ {𝑣}) ⊆ ℝ)
2524biimpri 133 . . . . . . . . 9 ((𝑢 ∪ {𝑣}) ⊆ ℝ → (𝑢 ⊆ ℝ ∧ {𝑣} ⊆ ℝ))
2625simpld 112 . . . . . . . 8 ((𝑢 ∪ {𝑣}) ⊆ ℝ → 𝑢 ⊆ ℝ)
2726adantl 277 . . . . . . 7 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → 𝑢 ⊆ ℝ)
28 simplr 528 . . . . . . 7 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
2927, 28mpd 13 . . . . . 6 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)
30 breq2 4087 . . . . . . . 8 (𝑥 = 𝑠 → (𝑦𝑥𝑦𝑠))
3130ralbidv 2530 . . . . . . 7 (𝑥 = 𝑠 → (∀𝑦𝑢 𝑦𝑥 ↔ ∀𝑦𝑢 𝑦𝑠))
3231cbvrexv 2766 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥 ↔ ∃𝑠 ∈ ℝ ∀𝑦𝑢 𝑦𝑠)
3329, 32sylib 122 . . . . 5 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑠 ∈ ℝ ∀𝑦𝑢 𝑦𝑠)
34 simprl 529 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑠 ∈ ℝ)
3525simprd 114 . . . . . . . . 9 ((𝑢 ∪ {𝑣}) ⊆ ℝ → {𝑣} ⊆ ℝ)
36 vex 2802 . . . . . . . . . 10 𝑣 ∈ V
3736snss 3803 . . . . . . . . 9 (𝑣 ∈ ℝ ↔ {𝑣} ⊆ ℝ)
3835, 37sylibr 134 . . . . . . . 8 ((𝑢 ∪ {𝑣}) ⊆ ℝ → 𝑣 ∈ ℝ)
3938ad2antlr 489 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑣 ∈ ℝ)
40 maxcl 11721 . . . . . . 7 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
4134, 39, 40syl2anc 411 . . . . . 6 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
42 nfv 1574 . . . . . . . . . . 11 𝑦 𝑢 ∈ Fin
43 nfv 1574 . . . . . . . . . . . 12 𝑦 𝑢 ⊆ ℝ
44 nfcv 2372 . . . . . . . . . . . . 13 𝑦
45 nfra1 2561 . . . . . . . . . . . . 13 𝑦𝑦𝑢 𝑦𝑥
4644, 45nfrexw 2569 . . . . . . . . . . . 12 𝑦𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥
4743, 46nfim 1618 . . . . . . . . . . 11 𝑦(𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)
4842, 47nfan 1611 . . . . . . . . . 10 𝑦(𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
49 nfv 1574 . . . . . . . . . 10 𝑦(𝑢 ∪ {𝑣}) ⊆ ℝ
5048, 49nfan 1611 . . . . . . . . 9 𝑦((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ)
51 nfv 1574 . . . . . . . . . 10 𝑦 𝑠 ∈ ℝ
52 nfra1 2561 . . . . . . . . . 10 𝑦𝑦𝑢 𝑦𝑠
5351, 52nfan 1611 . . . . . . . . 9 𝑦(𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)
5450, 53nfan 1611 . . . . . . . 8 𝑦(((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠))
55 simprr 531 . . . . . . . . . . . 12 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 𝑦𝑠)
56 maxle1 11722 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < ))
5734, 39, 56syl2anc 411 . . . . . . . . . . . 12 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < ))
58 r19.27av 2666 . . . . . . . . . . . 12 ((∀𝑦𝑢 𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∀𝑦𝑢 (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
5955, 57, 58syl2anc 411 . . . . . . . . . . 11 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6059r19.21bi 2618 . . . . . . . . . 10 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6127ad2antrr 488 . . . . . . . . . . . 12 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑢 ⊆ ℝ)
62 simpr 110 . . . . . . . . . . . 12 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦𝑢)
6361, 62sseldd 3225 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦 ∈ ℝ)
6434adantr 276 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑠 ∈ ℝ)
6541adantr 276 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
66 letr 8229 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ) → ((𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6763, 64, 65, 66syl3anc 1271 . . . . . . . . . 10 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → ((𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6860, 67mpd 13 . . . . . . . . 9 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
6968ex 115 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → (𝑦𝑢𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7054, 69ralrimi 2601 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
71 maxle2 11723 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < ))
7234, 39, 71syl2anc 411 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < ))
73 breq1 4086 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7473ralsng 3706 . . . . . . . . 9 (𝑣 ∈ ℝ → (∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7539, 74syl 14 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → (∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7672, 75mpbird 167 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
77 ralun 3386 . . . . . . 7 ((∀𝑦𝑢 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ∧ ∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
7870, 76, 77syl2anc 411 . . . . . 6 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
79 breq2 4087 . . . . . . . 8 (𝑥 = sup({𝑠, 𝑣}, ℝ, < ) → (𝑦𝑥𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
8079ralbidv 2530 . . . . . . 7 (𝑥 = sup({𝑠, 𝑣}, ℝ, < ) → (∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
8180rspcev 2907 . . . . . 6 ((sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ ∧ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8241, 78, 81syl2anc 411 . . . . 5 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8333, 82rexlimddv 2653 . . . 4 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8483exp31 364 . . 3 (𝑢 ∈ Fin → ((𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥) → ((𝑢 ∪ {𝑣}) ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)))
854, 8, 12, 16, 23, 84findcard2 7051 . 2 (𝐴 ∈ Fin → (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
8685impcom 125 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  cun 3195  wss 3197  c0 3491  {csn 3666  {cpr 3667   class class class wbr 4083  Fincfn 6887  supcsup 7149  cr 7998  0cc0 7999   < clt 8181  cle 8182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-er 6680  df-en 6888  df-fin 6890  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510
This theorem is referenced by:  fsum3cvg3  11907
  Copyright terms: Public domain W3C validator