ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxre2 GIF version

Theorem fimaxre2 11190
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre2
Dummy variables 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3170 . . . 4 (𝑤 = ∅ → (𝑤 ⊆ ℝ ↔ ∅ ⊆ ℝ))
2 raleq 2665 . . . . 5 (𝑤 = ∅ → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦 ∈ ∅ 𝑦𝑥))
32rexbidv 2471 . . . 4 (𝑤 = ∅ → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥))
41, 3imbi12d 233 . . 3 (𝑤 = ∅ → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (∅ ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)))
5 sseq1 3170 . . . 4 (𝑤 = 𝑢 → (𝑤 ⊆ ℝ ↔ 𝑢 ⊆ ℝ))
6 raleq 2665 . . . . 5 (𝑤 = 𝑢 → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦𝑢 𝑦𝑥))
76rexbidv 2471 . . . 4 (𝑤 = 𝑢 → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
85, 7imbi12d 233 . . 3 (𝑤 = 𝑢 → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)))
9 sseq1 3170 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → (𝑤 ⊆ ℝ ↔ (𝑢 ∪ {𝑣}) ⊆ ℝ))
10 raleq 2665 . . . . 5 (𝑤 = (𝑢 ∪ {𝑣}) → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥))
1110rexbidv 2471 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥))
129, 11imbi12d 233 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ ((𝑢 ∪ {𝑣}) ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)))
13 sseq1 3170 . . . 4 (𝑤 = 𝐴 → (𝑤 ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
14 raleq 2665 . . . . 5 (𝑤 = 𝐴 → (∀𝑦𝑤 𝑦𝑥 ↔ ∀𝑦𝐴 𝑦𝑥))
1514rexbidv 2471 . . . 4 (𝑤 = 𝐴 → (∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1613, 15imbi12d 233 . . 3 (𝑤 = 𝐴 → ((𝑤 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑤 𝑦𝑥) ↔ (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)))
17 0re 7920 . . . . 5 0 ∈ ℝ
18 ral0 3516 . . . . 5 𝑦 ∈ ∅ 𝑦 ≤ 0
19 breq2 3993 . . . . . . 7 (𝑥 = 0 → (𝑦𝑥𝑦 ≤ 0))
2019ralbidv 2470 . . . . . 6 (𝑥 = 0 → (∀𝑦 ∈ ∅ 𝑦𝑥 ↔ ∀𝑦 ∈ ∅ 𝑦 ≤ 0))
2120rspcev 2834 . . . . 5 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ∅ 𝑦 ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)
2217, 18, 21mp2an 424 . . . 4 𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥
2322a1i 9 . . 3 (∅ ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ∅ 𝑦𝑥)
24 unss 3301 . . . . . . . . . 10 ((𝑢 ⊆ ℝ ∧ {𝑣} ⊆ ℝ) ↔ (𝑢 ∪ {𝑣}) ⊆ ℝ)
2524biimpri 132 . . . . . . . . 9 ((𝑢 ∪ {𝑣}) ⊆ ℝ → (𝑢 ⊆ ℝ ∧ {𝑣} ⊆ ℝ))
2625simpld 111 . . . . . . . 8 ((𝑢 ∪ {𝑣}) ⊆ ℝ → 𝑢 ⊆ ℝ)
2726adantl 275 . . . . . . 7 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → 𝑢 ⊆ ℝ)
28 simplr 525 . . . . . . 7 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
2927, 28mpd 13 . . . . . 6 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)
30 breq2 3993 . . . . . . . 8 (𝑥 = 𝑠 → (𝑦𝑥𝑦𝑠))
3130ralbidv 2470 . . . . . . 7 (𝑥 = 𝑠 → (∀𝑦𝑢 𝑦𝑥 ↔ ∀𝑦𝑢 𝑦𝑠))
3231cbvrexv 2697 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥 ↔ ∃𝑠 ∈ ℝ ∀𝑦𝑢 𝑦𝑠)
3329, 32sylib 121 . . . . 5 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑠 ∈ ℝ ∀𝑦𝑢 𝑦𝑠)
34 simprl 526 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑠 ∈ ℝ)
3525simprd 113 . . . . . . . . 9 ((𝑢 ∪ {𝑣}) ⊆ ℝ → {𝑣} ⊆ ℝ)
36 vex 2733 . . . . . . . . . 10 𝑣 ∈ V
3736snss 3709 . . . . . . . . 9 (𝑣 ∈ ℝ ↔ {𝑣} ⊆ ℝ)
3835, 37sylibr 133 . . . . . . . 8 ((𝑢 ∪ {𝑣}) ⊆ ℝ → 𝑣 ∈ ℝ)
3938ad2antlr 486 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑣 ∈ ℝ)
40 maxcl 11174 . . . . . . 7 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
4134, 39, 40syl2anc 409 . . . . . 6 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
42 nfv 1521 . . . . . . . . . . 11 𝑦 𝑢 ∈ Fin
43 nfv 1521 . . . . . . . . . . . 12 𝑦 𝑢 ⊆ ℝ
44 nfcv 2312 . . . . . . . . . . . . 13 𝑦
45 nfra1 2501 . . . . . . . . . . . . 13 𝑦𝑦𝑢 𝑦𝑥
4644, 45nfrexxy 2509 . . . . . . . . . . . 12 𝑦𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥
4743, 46nfim 1565 . . . . . . . . . . 11 𝑦(𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)
4842, 47nfan 1558 . . . . . . . . . 10 𝑦(𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥))
49 nfv 1521 . . . . . . . . . 10 𝑦(𝑢 ∪ {𝑣}) ⊆ ℝ
5048, 49nfan 1558 . . . . . . . . 9 𝑦((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ)
51 nfv 1521 . . . . . . . . . 10 𝑦 𝑠 ∈ ℝ
52 nfra1 2501 . . . . . . . . . 10 𝑦𝑦𝑢 𝑦𝑠
5351, 52nfan 1558 . . . . . . . . 9 𝑦(𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)
5450, 53nfan 1558 . . . . . . . 8 𝑦(((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠))
55 simprr 527 . . . . . . . . . . . 12 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 𝑦𝑠)
56 maxle1 11175 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < ))
5734, 39, 56syl2anc 409 . . . . . . . . . . . 12 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < ))
58 r19.27av 2605 . . . . . . . . . . . 12 ((∀𝑦𝑢 𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∀𝑦𝑢 (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
5955, 57, 58syl2anc 409 . . . . . . . . . . 11 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6059r19.21bi 2558 . . . . . . . . . 10 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → (𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6127ad2antrr 485 . . . . . . . . . . . 12 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑢 ⊆ ℝ)
62 simpr 109 . . . . . . . . . . . 12 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦𝑢)
6361, 62sseldd 3148 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦 ∈ ℝ)
6434adantr 274 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑠 ∈ ℝ)
6541adantr 274 . . . . . . . . . . 11 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ)
66 letr 8002 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ) → ((𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6763, 64, 65, 66syl3anc 1233 . . . . . . . . . 10 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → ((𝑦𝑠𝑠 ≤ sup({𝑠, 𝑣}, ℝ, < )) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
6860, 67mpd 13 . . . . . . . . 9 (((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) ∧ 𝑦𝑢) → 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
6968ex 114 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → (𝑦𝑢𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7054, 69ralrimi 2541 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦𝑢 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
71 maxle2 11176 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < ))
7234, 39, 71syl2anc 409 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < ))
73 breq1 3992 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7473ralsng 3623 . . . . . . . . 9 (𝑣 ∈ ℝ → (∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7539, 74syl 14 . . . . . . . 8 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → (∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ↔ 𝑣 ≤ sup({𝑠, 𝑣}, ℝ, < )))
7672, 75mpbird 166 . . . . . . 7 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
77 ralun 3309 . . . . . . 7 ((∀𝑦𝑢 𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ) ∧ ∀𝑦 ∈ {𝑣}𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
7870, 76, 77syl2anc 409 . . . . . 6 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < ))
79 breq2 3993 . . . . . . . 8 (𝑥 = sup({𝑠, 𝑣}, ℝ, < ) → (𝑦𝑥𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
8079ralbidv 2470 . . . . . . 7 (𝑥 = sup({𝑠, 𝑣}, ℝ, < ) → (∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥 ↔ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )))
8180rspcev 2834 . . . . . 6 ((sup({𝑠, 𝑣}, ℝ, < ) ∈ ℝ ∧ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦 ≤ sup({𝑠, 𝑣}, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8241, 78, 81syl2anc 409 . . . . 5 ((((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) ∧ (𝑠 ∈ ℝ ∧ ∀𝑦𝑢 𝑦𝑠)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8333, 82rexlimddv 2592 . . . 4 (((𝑢 ∈ Fin ∧ (𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥)) ∧ (𝑢 ∪ {𝑣}) ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)
8483exp31 362 . . 3 (𝑢 ∈ Fin → ((𝑢 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥) → ((𝑢 ∪ {𝑣}) ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝑢 ∪ {𝑣})𝑦𝑥)))
854, 8, 12, 16, 23, 84findcard2 6867 . 2 (𝐴 ∈ Fin → (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
8685impcom 124 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  cun 3119  wss 3121  c0 3414  {csn 3583  {cpr 3584   class class class wbr 3989  Fincfn 6718  supcsup 6959  cr 7773  0cc0 7774   < clt 7954  cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-er 6513  df-en 6719  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  fsum3cvg3  11359
  Copyright terms: Public domain W3C validator