| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.28av | GIF version | ||
| Description: Restricted version of one direction of Theorem 19.28 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| r19.28av | ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.27av 2632 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜓 ∧ 𝜑) → ∀𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | |
| 2 | ancom 266 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
| 3 | ancom 266 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 4 | 3 | ralbii 2503 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
| 5 | 1, 2, 4 | 3imtr4i 201 | 1 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: rr19.28v 2904 fununi 5327 |
| Copyright terms: Public domain | W3C validator |