Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.28av | GIF version |
Description: Restricted version of one direction of Theorem 19.28 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
r19.28av | ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.27av 2605 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜓 ∧ 𝜑) → ∀𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | |
2 | ancom 264 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
3 | ancom 264 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
4 | 3 | ralbii 2476 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
5 | 1, 2, 4 | 3imtr4i 200 | 1 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-ral 2453 |
This theorem is referenced by: rr19.28v 2870 fununi 5264 |
Copyright terms: Public domain | W3C validator |