Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrimiv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | ralrimi 2541 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 |
This theorem is referenced by: ralrimiva 2543 ralrimivw 2544 ralrimivv 2551 r19.27av 2605 rr19.3v 2869 rabssdv 3227 rzal 3511 trin 4095 class2seteq 4147 ralxfrALT 4450 ssorduni 4469 ordsucim 4482 onintonm 4499 issref 4991 funimaexglem 5279 resflem 5657 poxp 6208 rdgss 6359 dom2lem 6746 supisoti 6983 ordiso2 7008 updjud 7055 uzind 9310 zindd 9317 lbzbi 9562 icoshftf1o 9935 maxabslemval 11159 xrmaxiflemval 11200 fisum0diag2 11397 alzdvds 11801 hashgcdeq 12180 tgcl 12779 distop 12800 neiuni 12876 cnpnei 12934 isxmetd 13062 fsumcncntop 13271 bj-nntrans2 13909 bj-inf2vnlem1 13927 |
Copyright terms: Public domain | W3C validator |