Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrimiv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | ralrimi 2537 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 |
This theorem is referenced by: ralrimiva 2539 ralrimivw 2540 ralrimivv 2547 r19.27av 2601 rr19.3v 2865 rabssdv 3222 rzal 3506 trin 4090 class2seteq 4142 ralxfrALT 4445 ssorduni 4464 ordsucim 4477 onintonm 4494 issref 4986 funimaexglem 5271 resflem 5649 poxp 6200 rdgss 6351 dom2lem 6738 supisoti 6975 ordiso2 7000 updjud 7047 uzind 9302 zindd 9309 lbzbi 9554 icoshftf1o 9927 maxabslemval 11150 xrmaxiflemval 11191 fisum0diag2 11388 alzdvds 11792 hashgcdeq 12171 tgcl 12704 distop 12725 neiuni 12801 cnpnei 12859 isxmetd 12987 fsumcncntop 13196 bj-nntrans2 13834 bj-inf2vnlem1 13852 |
Copyright terms: Public domain | W3C validator |