| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimiv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 1, 2 | ralrimi 2568 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: ralrimiva 2570 ralrimivw 2571 ralrimivv 2578 r19.27av 2632 rr19.3v 2903 rabssdv 3264 rzal 3549 trin 4142 class2seteq 4197 ralxfrALT 4503 ssorduni 4524 ordsucim 4537 onintonm 4554 issref 5053 funimaexglem 5342 resflem 5729 poxp 6299 rdgss 6450 dom2lem 6840 supisoti 7085 ordiso2 7110 updjud 7157 uzind 9456 zindd 9463 lbzbi 9709 icoshftf1o 10085 maxabslemval 11392 xrmaxiflemval 11434 fisum0diag2 11631 alzdvds 12038 hashgcdeq 12435 ghmrn 13465 ghmpreima 13474 imasring 13698 01eq0ring 13823 islssmd 13993 tgcl 14408 distop 14429 neiuni 14505 cnpnei 14563 isxmetd 14691 fsumcncntop 14911 fsumdvdsmul 15335 bj-nntrans2 15706 bj-inf2vnlem1 15724 |
| Copyright terms: Public domain | W3C validator |