| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimiv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 1, 2 | ralrimi 2601 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: ralrimiva 2603 ralrimivw 2604 ralrimivv 2611 r19.27av 2666 rr19.3v 2942 rabssdv 3304 rzal 3589 trin 4192 class2seteq 4247 ralxfrALT 4558 ssorduni 4579 ordsucim 4592 onintonm 4609 issref 5111 funimaexglem 5404 resflem 5799 poxp 6378 rdgss 6529 dom2lem 6923 supisoti 7177 ordiso2 7202 updjud 7249 uzind 9558 zindd 9565 lbzbi 9811 icoshftf1o 10187 ccatrn 11144 maxabslemval 11719 xrmaxiflemval 11761 fisum0diag2 11958 alzdvds 12365 hashgcdeq 12762 ghmrn 13794 ghmpreima 13803 imasring 14027 01eq0ring 14153 islssmd 14323 tgcl 14738 distop 14759 neiuni 14835 cnpnei 14893 isxmetd 15021 fsumcncntop 15241 fsumdvdsmul 15665 uspgr2wlkeq 16076 bj-nntrans2 16315 bj-inf2vnlem1 16333 |
| Copyright terms: Public domain | W3C validator |