![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrimiv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | ralrimi 2565 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: ralrimiva 2567 ralrimivw 2568 ralrimivv 2575 r19.27av 2629 rr19.3v 2900 rabssdv 3260 rzal 3545 trin 4138 class2seteq 4193 ralxfrALT 4499 ssorduni 4520 ordsucim 4533 onintonm 4550 issref 5049 funimaexglem 5338 resflem 5723 poxp 6287 rdgss 6438 dom2lem 6828 supisoti 7071 ordiso2 7096 updjud 7143 uzind 9431 zindd 9438 lbzbi 9684 icoshftf1o 10060 maxabslemval 11355 xrmaxiflemval 11396 fisum0diag2 11593 alzdvds 11999 hashgcdeq 12380 ghmrn 13330 ghmpreima 13339 imasring 13563 01eq0ring 13688 islssmd 13858 tgcl 14243 distop 14264 neiuni 14340 cnpnei 14398 isxmetd 14526 fsumcncntop 14746 bj-nntrans2 15514 bj-inf2vnlem1 15532 |
Copyright terms: Public domain | W3C validator |