| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimiv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 1, 2 | ralrimi 2577 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 |
| This theorem is referenced by: ralrimiva 2579 ralrimivw 2580 ralrimivv 2587 r19.27av 2641 rr19.3v 2912 rabssdv 3273 rzal 3558 trin 4152 class2seteq 4207 ralxfrALT 4514 ssorduni 4535 ordsucim 4548 onintonm 4565 issref 5065 funimaexglem 5357 resflem 5744 poxp 6318 rdgss 6469 dom2lem 6863 supisoti 7112 ordiso2 7137 updjud 7184 uzind 9484 zindd 9491 lbzbi 9737 icoshftf1o 10113 ccatrn 11065 maxabslemval 11519 xrmaxiflemval 11561 fisum0diag2 11758 alzdvds 12165 hashgcdeq 12562 ghmrn 13593 ghmpreima 13602 imasring 13826 01eq0ring 13951 islssmd 14121 tgcl 14536 distop 14557 neiuni 14633 cnpnei 14691 isxmetd 14819 fsumcncntop 15039 fsumdvdsmul 15463 bj-nntrans2 15892 bj-inf2vnlem1 15910 |
| Copyright terms: Public domain | W3C validator |