![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrimiv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | ralrimi 2561 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 ∀wral 2468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2473 |
This theorem is referenced by: ralrimiva 2563 ralrimivw 2564 ralrimivv 2571 r19.27av 2625 rr19.3v 2891 rabssdv 3250 rzal 3535 trin 4126 class2seteq 4181 ralxfrALT 4485 ssorduni 4504 ordsucim 4517 onintonm 4534 issref 5029 funimaexglem 5318 resflem 5701 poxp 6258 rdgss 6409 dom2lem 6799 supisoti 7040 ordiso2 7065 updjud 7112 uzind 9395 zindd 9402 lbzbi 9648 icoshftf1o 10023 maxabslemval 11252 xrmaxiflemval 11293 fisum0diag2 11490 alzdvds 11895 hashgcdeq 12274 ghmrn 13213 ghmpreima 13222 imasring 13431 01eq0ring 13553 islssmd 13692 tgcl 14041 distop 14062 neiuni 14138 cnpnei 14196 isxmetd 14324 fsumcncntop 14533 bj-nntrans2 15182 bj-inf2vnlem1 15200 |
Copyright terms: Public domain | W3C validator |