| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimiv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 1, 2 | ralrimi 2579 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 |
| This theorem is referenced by: ralrimiva 2581 ralrimivw 2582 ralrimivv 2589 r19.27av 2643 rr19.3v 2919 rabssdv 3281 rzal 3566 trin 4168 class2seteq 4223 ralxfrALT 4532 ssorduni 4553 ordsucim 4566 onintonm 4583 issref 5084 funimaexglem 5376 resflem 5767 poxp 6341 rdgss 6492 dom2lem 6886 supisoti 7138 ordiso2 7163 updjud 7210 uzind 9519 zindd 9526 lbzbi 9772 icoshftf1o 10148 ccatrn 11103 maxabslemval 11634 xrmaxiflemval 11676 fisum0diag2 11873 alzdvds 12280 hashgcdeq 12677 ghmrn 13708 ghmpreima 13717 imasring 13941 01eq0ring 14066 islssmd 14236 tgcl 14651 distop 14672 neiuni 14748 cnpnei 14806 isxmetd 14934 fsumcncntop 15154 fsumdvdsmul 15578 bj-nntrans2 16087 bj-inf2vnlem1 16105 |
| Copyright terms: Public domain | W3C validator |