![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrimiv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ralrimiv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
ralrimiv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimiv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 1, 2 | ralrimi 2565 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: ralrimiva 2567 ralrimivw 2568 ralrimivv 2575 r19.27av 2629 rr19.3v 2899 rabssdv 3259 rzal 3544 trin 4137 class2seteq 4192 ralxfrALT 4498 ssorduni 4519 ordsucim 4532 onintonm 4549 issref 5048 funimaexglem 5337 resflem 5722 poxp 6285 rdgss 6436 dom2lem 6826 supisoti 7069 ordiso2 7094 updjud 7141 uzind 9428 zindd 9435 lbzbi 9681 icoshftf1o 10057 maxabslemval 11352 xrmaxiflemval 11393 fisum0diag2 11590 alzdvds 11996 hashgcdeq 12377 ghmrn 13327 ghmpreima 13336 imasring 13560 01eq0ring 13685 islssmd 13855 tgcl 14232 distop 14253 neiuni 14329 cnpnei 14387 isxmetd 14515 fsumcncntop 14724 bj-nntrans2 15444 bj-inf2vnlem1 15462 |
Copyright terms: Public domain | W3C validator |