ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimiv GIF version

Theorem ralrimiv 2569
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.)
Hypothesis
Ref Expression
ralrimiv.1 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
ralrimiv (𝜑 → ∀𝑥𝐴 𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem ralrimiv
StepHypRef Expression
1 nfv 1542 . 2 𝑥𝜑
2 ralrimiv.1 . 2 (𝜑 → (𝑥𝐴𝜓))
31, 2ralrimi 2568 1 (𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  ralrimiva  2570  ralrimivw  2571  ralrimivv  2578  r19.27av  2632  rr19.3v  2903  rabssdv  3264  rzal  3549  trin  4142  class2seteq  4197  ralxfrALT  4503  ssorduni  4524  ordsucim  4537  onintonm  4554  issref  5053  funimaexglem  5342  resflem  5729  poxp  6299  rdgss  6450  dom2lem  6840  supisoti  7085  ordiso2  7110  updjud  7157  uzind  9456  zindd  9463  lbzbi  9709  icoshftf1o  10085  maxabslemval  11392  xrmaxiflemval  11434  fisum0diag2  11631  alzdvds  12038  hashgcdeq  12435  ghmrn  13465  ghmpreima  13474  imasring  13698  01eq0ring  13823  islssmd  13993  tgcl  14408  distop  14429  neiuni  14505  cnpnei  14563  isxmetd  14691  fsumcncntop  14911  fsumdvdsmul  15335  bj-nntrans2  15706  bj-inf2vnlem1  15724
  Copyright terms: Public domain W3C validator